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A B S T R A C T

Wildfires are expected to become more intense due to global warming. This change will significantly affect ecosystems and communities. We examine when and 
where fire weather conditions go beyond natural variability by using the Canadian Fire Weather Index (FWI). We analyze data from CORDEX-CORE and EURO- 
CORDEX regional simulations, along with CMIP5 and CMIP6 global models, under the RCP8.5 and SSP5-8.5 scenarios. The study spans from 1980 to 2099 and 
focuses on Global Warming Levels (GWLs) ranging from +1.5 to +4.0 ◦C compared to pre-industrial climate.

When we evaluate against GEFF-ERA5 reanalysis, we find that the CORDEX ensemble better reflects historical FWI trends compared to CMIP5 and CMIP6. 
Projections show widespread increases in FWI, primarily due to higher temperatures and lower relative humidity, along with regional impacts from precipitation and 
wind. The danger class analyses indicate a shift toward Extreme and Very Extreme conditions in the Mediterranean, southern Africa, South America, and Australia, 
occurring already with 2–3 ◦C of warming.

The Time of Emergence (ToE) analysis reveals that human influence is already detectable in 39% of the AR6 regions, to become 81% by 2030. The Global 
Temperature of Emergence (GToE) suggests that over 25% of burnable land areas will cross emergence thresholds at +1.5 ◦C, increasing to over 70% at +3.0 ◦C. The 
length of the fire season is also expected to increase in most regions. These findings highlight the urgent need for strategies to manage wildfire risk and adapt to these 
changes globally.

Key points

• Regional climate models (CORDEX) more accurately reproduce 
historical fire-weather conditions compared to CMIP5/CMIP6 
global models.

• Widespread increases in extreme fire-weather conditions 
emerge under 2–3 ◦C of global warming, especially in the 
Mediterranean, southern Africa, Amazonia, Central America 
and Southern Australia.

• Human influence on fire weather is already detectable in ~40% 
of AR6 regions, increasing to >80% by 2030.

• Fire season length is projected to increase in most fire-prone 
regions, amplifying risks to ecosystems and communities.

• Results provide geographically- and temporally-specific guid
ance for wildfire adaptation planning.

1. Introduction

Wildfires represent a growing and severe threat to ecosystems, 
communities, and economies worldwide. Understanding drivers of fire 
activity is crucial for developing effective strategies in wildfire man
agement, mitigation, and adaptation in a changing climate. Over the 
past half century, global fire activity has been documented to increase in 
several parts of the world (Kasischke and Turetsky, 2006; Westerling, 
2016).

This upward trend in wildfires is attributed to a complex interplay of 
factors, including climate change, land-use changes, and human activ
ities. Weather and climate play a crucial role in determining the fire 
regime of an area (Viegas and Viegas, 1994; Pyne, 1996; Skinner et al., 
1999; Kunkel, 2001; Viegas et al., 2001; Pereira et al., 2005). Therefore, 
shift in climatic conditions can significantly enhance wildfire activity in 
many areas.

To better understand the meteorological drivers that determine a 
persistent fire activity once ignition has occurred, the scientific com
munity has been extensively studying fire behavior. It is intuitive that 
dry, live fuels tend to ignite more easily than moist fuel when low 
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humidity and high temperature are combined. Additionally, compared 
to situations when wind primarily blows in one prevailing direction, 
considerable wind variability supports the spread over broader areas. As 
a result of climate change, fire weather and the likelihood of fire events 
are expected to rise in many regions around the world, including areas 

that have historically been less prone to wildfires (Masson-Delmotte 
et al.). Meteorologically, the risk of fire ignition rises with higher tem
peratures, stronger winds, and lower relative humidity. Projected 
changes in these variables are expected to more than double the fre
quency of extreme fire weather events by the end of the 21st century 
(Touma et al., 2021), while also increasing the duration, severity, and 
geographic reach of fires (Bowman et al., 2020; Fargeon et al., 2020; 
Ruffault et al., 2020; De Rigo et al., 2017).

It is possible to study projections of fire risk under climate change by 
means of fire indices, such as the Canadian Forest Fire Weather Index 
(FWI; van Wagner, 1987), the U.S. Forest Service's National Fire Danger 
Rating System (NFDRS; Larry S. et al., 1984), or Australia's McArthur 
Rating System (Mark 5; McArthur, 1967). These indices are statistical 
models that capture the relationship between fire occurrences and 
weather conditions. They have been shown to provide reliable assess
ments of fire danger in both short- and long-term weather forecasts 
worldwide (Di Giuseppe et al., 2016).

In this study we use the FWI from the Canadian Forest Fire Weather 
Index System, one of the most extensively used models to estimate fire 
danger globally (as noted in Di Giuseppe et al., 2016; Field, 2020; de 
Groot et al., 2013). The FWI is particularly suitable in this context 
because it represents potential fire intensity associated with fuel dryness 
and fire weather conditions, and is independent of land cover and 
biomass type. It is highly sensitive to changes in temperature, precipi
tation, humidity, and wind speed (Flannigant et al., 2016) and shows 
strong empirical associations with burned areas across extensive regions 
of the world (Abatzoglou et al., 2018).

Earlier research (e.g., Flannigan et al., 2013) has examined changes 
in global fire weather metrics under anthropogenic climate change using 
global climate models (Bedia and Bhend, 2015; Williams and Abatzo
glou, 2016). However only a few studies have explicitly deterined when 
or whether observed changes can be attributed to anthropogenic in
fluences rather than internal climate variability (Abatzoglou et al., 
2016).

In this study, we instead analyze the full set of high-resolution 
regional climate CORDEX-CORE simulations, enabling a more region- 
specific assessment of climate-driven shifts in fire weather. Regional 
climate models better represent local-scale processes and feedbacks that 
strongly influence changes in precipitation, humidity and wind patterns, 
key drivers of fire danger.

We evaluate the results within the time of emergence (ToE) frame
work. The ToE concept is central to understand when the anthropogenic 
climate-change signal becomes statistically distringuishable from the 
background natural climate variability. It therefore provides insight into 
the timeframe over which human-driven changes in fire-weather con
ditions become unavoidable and relevant for adaptation planning.

2. Data and methods

2.1. CORDEX-CORE climate projections

In this analysis, we use simulations from 31 CORDEX-CORE simu
lations (Table 1) at 0.22◦ resolution over the NAM, SAM, CAM, AFR, 
AUS, WAS, EAS and SEA domains, and at 0.11◦ resolution over the 
EURO-CORDEX domain. The second ensemble used for comparison 
consists of the driving global simulations used for the CORDEX-CORE 
experiments (Table 2), from the Fifth Phase of the Coupled Model 
Intercomparison Project CMIP5 (Taylor et al., 2012). As a third 
ensemble, we analyze 7 simulations from CMIP6 (Eyring et al., 2016) 
(Table 3). The choice of the members of the CMIP6 ensemble is a 
compromise between the models’ availability at the time of the analysis 
and the coverage of the climate sensitivity spread of the models. All 
CORDEX-CORE, EURO-CORDEX and CMIP5 simulations follow the 
RCP8.5 scenario (Riahi et al., 2011), while SSP585 (Shared 
Socio-Economic Pathways, Riahi, 2017) is used for the CMIP6 ensemble. 
Most of the analysis was conducted based on the distribution of IPCC 

Table 1 
CORDEX-CORE and EURO-CORDEX RCMs and their corresponding driving GCM 
used in this study.

Driving GCM Ensemble CORDEX-CORE 0.22 CORDEX region

CNRM-CM5 r1i1p1 GERICS-REMO2015 EUR
CNRM-CM5 r1i1p1 SMHI-RCA4 EUR
EC-EARTH r1i1p1 DMI-HIRHAM5 EUR
EC-EARTH r1i1p1 KNMI-RACMO22E EUR
EC-EARTH r1i1p1 SMHI-RCA4 EUR
EC-EARTH r12i1p1 CLMcom-ETH- 

COSMO-crCLIM-v1-1
EUR

EC-EARTH r12i1p1 DMI-HIRHAM5 EUR
EC-EARTH r12i1p1 KNMI-RACMO22E EUR
EC-EARTH r12i1p1 MOHC-HadREM3- 

GA7-05
EUR

EC-EARTH r12i1p1 SMHI-RCA4 EUR
EC-EARTH r3i1p1 KNMI-RACMO22E EUR
EC-EARTH r3i1p1 SMHI-RCA4 EUR
GFDL- 

ESM2M
r1i1p1 ICTP-RegCM4-7 CAM, NAM

HadGEM2- 
ES

r1i1p1 CNRM-ALADIN63 EUR

HadGEM2- 
ES

r1i1p1 ICTP-RegCM4-6 EUR, AUS, AFR, CAM, EAS, 
SAM, SEA, NAM

HadGEM2- 
ES

r1i1p1 KNMI-RACMO22E EUR

HadGEM2- 
ES

r1i1p1 MOHC-HadREM3- 
GA7-05

EUR

HadGEM2- 
ES

r1i1p1 GERICS-REMO2015 AUS, AFR, CAM, EAS, NAM, 
SAM, SEA, WAS

IPSL-CM5A- 
MR

r1i1p1 GERICS-REMO2015 EUR

IPSL-CM5A- 
MR

r1i1p1 KNMI-RACMO22E EUR

MIROC5 r1i1p1 ICTP-RegCM4-6 WAS
MPI-ESM-LR r1i1p1 CLMcom-ETH- 

COSMO-crCLIM-v1-1
EUR

MPI-ESM-LR r1i1p1 CNRM-ALADIN63 EUR
MPI-ESM-LR r1i1p1 DMI-HIRHAM5 EUR
MPI-ESM-LR r1i1p1 ICTP-RegCM4-6 EUR, NAM
MPI-ESM-LR r1i1p1 KNMI-RACMO22E EUR
MPI-ESM-LR r1i1p1 SMHI-RCA4 EUR
MPI-ESM-LR r1i1p1 GERICS-REMO2015 AFR, AUS, CAM, EAS, EUR, 

NAM, SAM, SEA, WAS
MPI-ESM-LR r2i1p1 CLMcom-ETH- 

COSMO-crCLIM-v1-1
EUR

MPI-ESM-LR r2i1p1 SMHI-RCA4 EUR
MPI-ESM-LR r3i1p1 GERICS-REMO2015 EUR
MPI-ESM-LR r3i1p1 SMHI-RCA4 EUR
MPI-ESM- 

MR
r1i1p1 ICTP-RegCM4-6 AFR, AUS, CAM, EAS, SAM, 

SEA, WAS
NorESM1-M r1i1p1 CLMcom-ETH- 

COSMO-crCLIM-v1-1
EUR

NorESM1-M r1i1p1 GERICS-REMO2015 EUR, AUS, AFR,CAM, EAS, 
NAM, SAM, SEA, WAS

NorESM1-M r1i1p1 KNMI-RACMO22E EUR
NorESM1-M r1i1p1 SMHI-RCA4 EUR
NorESM1-M r1i1p1 ICTP-RegCM4-6 EUR, AUS, AFR, EAS, SAM, 

SEA, WAS

Table 2 
CMIP5 Models used in this study.

CMIP5 Ensemble

NorESM1-M r1i1p1
MPI-ESM-MR r1i1p1
MPI-ESM-LR r1i1p1
HadGEM2-ES r1i1p1
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AR6 regions (Iturbine et al., 2020), shown in Fig. S1 (Table 2).

2.2. The fire weather index

The Fire Weather Index (FWI) is a component of the Canadian Forest 
Fire Danger Rating System (Van Wagner, 1987). Although originally 
developed and calibrated to characterize fire behavior in a jack pine 
(Pinus banksiana) stands typical of Canadian boreal forests, its compu
tational efficiency and limited input requirements have led to wide
spread adoption in various countries. The index has demonstrated good 
performance even in ecosystems markedly different from the boreal 
environment, as indicated by studies such as Di Giuseppe et al. (2016)
and De Rigo et al. (2017). The European Centre for Medium-Range 
Weather Forecasts (ECMWF) has played an important role in 
advancing our understanding of weather-related risks, including the 
increasingly pressing issue of wildfires. The Global ECMWF Fire Forecast 
(GEFF) System developed by ECMWF (Di Giuseppe et al., 2020) supports 
the assessment and prediction of fire danger conditions by integrating 
relevant meteorological and environmental factors. The FWI calculation 
solely relies on atmospheric variables, without incorporating informa
tion about the current vegetation conditions. This approach estimates 
the physical potential for fire ignition and spread driven by climate 
forcing. As such, the FWI provides a robust climatic indicator of fire 
danger under global warming, independent of transient changes in 
vegetation cover. The FWI system follows a modular structure (see 
Fig. 1), where each component builds upon fuel moisture conditions to 
determine the potential for fire spread and intensity. Three fuel moisture 
components quantitatively track drying processes at different organic 
layer depths: the Fine Fuel Moisture Code (FFMC) represents the rapid 
response of fine surface fuels to atmospheric forcing and a primary 
driver of ignition likelihood; the Duff Moisture Code (DMC) captures the 
moisture status of intermediate duff-layers, which dry more slowly than 
surface fuels and therefore reflect persisent changes in weather condi
tions; the Drought Code (DC) quantifies long-term seasonal dryness in 
deep, compact organic matter. These moisture codes directly influence 
fuel availability. Fire behavior potential is then derived through two 
intermediate indices: the Initial Spread Index (ISI), which combines 
FFMC with wind speed to represent the expected rate of fire spread 
under given conditions, and the Build-Up Index (BUI), which integrates 
DMC and DC to estimate the total amount of combustible fuel available 
for sustained burning. Finally, the Fire Weather Index (FWI) 
non-linearly combines ISI and BUI to represent the potential fire in
tensity. Through this hierarchical structure, the FWI links meteorolog
ical variability to fuel dryness and the capacity for fast-spreading, 

high-intensity fires (Van Wagner, 1987; Wotton, 2009).
For the sake of conciseness, we have just briefly reviewed the 

fundamental concepts behind the FWI system. For a comprehensive 
explanation of the FWI system, the interactions between the various 
components, and how these are employed in fire management, we refer 
to Van Wagner (1987) and Wotton (2009).

Indicators of fire danger are provided by the Fire Weather Index 
system based on four weather factors: temperature, relative humidity, 
precipitation, and wind speed (Van Wagner, 1987). The FWI requires 
daily 24-hr accumulated precipitation as well as temperature, humidity, 
and wind speed at 1 200 local time. However, due to challanges in 
obtaining both observed and modeled data at 12:00 local time, many 
studies compute the FWI on a daily basis (Carvalho et al., 2010; Gian
nakopoulos et al., 2009; Moriondo et al., 2006, Bento et al., 2023). To 
represent the worst case scenario we use daily maximum temperature, 
daily wind speed, daily accumulated precipitation and daily relative 
humidity for historical (1980–2005) and future (2006–2099) experi
ments. Regions where more than 80% of their existing land cover is 
classified as water, snow/ice, or barren/sparsely vegetated by MODIS 
land cover type product (Friedl et al., 2010) are considered unburnable 
and masked out of the analysis (see Fig. S1).

2.3. Estimating fire danger using FWI danger classes

The Fire Weather Index was calculated on a daily basis for each 
calendar year (1 January to 31 December) over the period 1980–2099 
for all climate model ensemble members. To facilitate the interpretation 
of the FWI, we used six fire danger classes proposed by the European 
Forest Fire Information System (EFFIS; EFFIS, 2021), each class repre
senting a different level of wildfire risk: low, medium, high, very high, 
extreme, very extreme (see Table 4). The FWI danger classes are 
essential tools for wildfire management and prevention strategies. They 

Fig. 1. Flowchart of the Canadian Forest Fire Weather Index (FWI) system used in this study (Van Wagner, 1987).

Table 3 
CMIP6 models used in this study.

CMIP6 Ensemble

CNRM-CM6-1 r1i1p1f2
EC-Earth3-Veg r1i1p1f2
CanESM5 r1i1p1f2
MIROC6 r1i1p1f2
HadGEM3-GC31-LL r1i1p1f2
MRI-ESM2-0 r1i1p1f2
NorESM2-LM r1i1p1f2
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provide actionable information to guide preparedness and response 
measures, such as resource allocation, fire restricions, and public saftey 
notifications, with the goal of reducing wildfire impacts on ecosystems 
and society.

2.4. Time of Emergence (ToE)

The concept of “time of emergence” is crucial in various fields, 
ranging from climate science to technological innovation. In climate 
science, the ToE is used as an indicator of when the forced signal of 
climate change becomes distinguishable from the background noise of 
natural variability. Specifically, TOE marks the moment when a given 
climate variable, such as temperature, precipitation, or in our case fire- 
weather, exceeds the range of variability observed under historical 
conditions, making the influence of anthropogenic climate change 
detectable. In this study, we define TOE as the year when the increase in 
the Fire Weather Index (FWI) rises above the upper bound of its internal- 
variability envelope. The envelope is computed using ±2 standard de
viations of the climate-model ensemble distribution over a reference 
historical period (1980–2010). TOE is then identified as the first year in 
which the 30-year running mean of the ensemble-mean FWI exceeds this 
upper bound.

This approach is consistent with the widely used ±2σ detectability 
criterion, approximating a 95% confidence range for internal variability 
(e.g., Hawkins and Sutton, 2012). By requiring the forced signal to 
exceed this threshold, we ensure that emergence is attributed to 
anthropogenic climate change rather than fluctuations expected under 
natural variability alone. To assess the robustness of our TOE estimates, 
we complement this confidence-interval method with a signal-to-noise 
(S/N) threshold analysis, where emergence is detected once the forced 
change in FWI exceeds a multiple of the simulated interannual vari
ability. We use S/N > 1 as our central criterion (signal larger than noise, 
as previously done by Hawkins and Sutton, 2012; Hawkins et al., 2020; 
Dosio et al., 2025).

2.5. Global Temperature of Emergence (GToE)

Following Hawkins and Sutton (2012), we also evaluate the 

emergence of fire-weather signals as a function of global warming rather 
than time, using the Global Temperature of Emergence (GToE) frame
work. Unlike ToE, which depends on the evolution of emissions in time, 
GToE expresses the detectability of change directly as a funcion of global 
mean surface temperature increase relative to pre-industrial conditions. 
This provies a scenario-independent metric that is more closely aligned 
with policy targets such as for example the Paris Agreement. GToE is 
defined on the basis of thresholds of temperature, the Global Warming 
Levels, expressed as changes in surface global temperature relative to 
the pre-industrial period (1850–1900). In the present work, we assess 
emergence at five Global Warming Levels (GWLs): 1.0◦, 1.5 ◦C, 2.0 ◦C, 
3.0 ◦C, and 4.0 ◦C. Consistent with the S/N-based detectability approach 
outlined in Section 2.4, we diagnose emergence for each model when the 
forced FWI signal exceeds internal variability. To ensure robustness, 
following the IPCC AR6 WGI Atlas metodology for defining robust 
climate change signals (Cross-Chapter Box Atlas.1), a region is consid
ered to have emerged when (i) at least 66% of models satisfy S/N > 1, to 
ensure consistent detection of signals emerging from natural variability, 
and (ii) at least 80% of them agree on the sign of change, to reduce false 
positives while recognizing increased multi-model agreement in future 
projections. The signal-to-noise ratio is estimated for each model from 
the ratio between the change and the standard deviation of the reference 
period 1980–2010. This complementary diagnostic allows us to identify 
not only when but under what level of global warming fire-weather 
conditions become detectably more sever, supporting impact-relevant 
interpretation of the results, highlighting the urgency of adaptation in 
tregions where emergence occurs already below 1.5 ◦C of global 
warming.

3. Results

3.1. Validation vs GEFF-ERA5

The FWI is not a directly observable quantity, being an index 
quantifying potential danger. It can be however validated against 
existing reanalysis products. This section examines how the FWI ob
tained using CORDEX-CORE, CMIP5 and CMIP6 data compares to 
reanalysis products, such as the data from the Global ECMWF Fire 
Forecast model (hereafter GEFF-ERA5; Vitolo et al., 2019). Developed 
by the European Forest Fire Information System under the Copernicus 
Emergency Management Service, GEFF-ERA5 provides daily, contin
uous fire weather data with a spatial resolution of 0.25◦ across the global 
land surface. GEFF-ERA5 is based on input fields from the ERA5 Rean
alysis (ERA5; Hersbach et al., 2020) and covers the period from 1979 to 
the present.

Before investigating the climate change signal on the FWI, we are 
interested in assessing the model's ability in reproducing the observed 
trend in fire-weather conditions. Fig. 2 shows the spatial patterns of 
statistically significant linear trends over 1980–2005 of the three en
sembles analyzed. Hatched lines cover areas where changes are not 
significant at the 95% confidence level (Student's t-test). Areas of large 
positive trends are seen over all the continents for the reanalysis, more 
intense on continental South America, Central-Eastern Africa, South 
Africa, Western North America and Northern Central America, West 
Central-Asia and East Asia; a negative trend is present over the Indian 
peninsula. The spatial pattern is globally well represented by the 
CORDEX-CORE ensemble, that is overall more consistent with GEFF- 
ERA5 in representing a significant positive trend but weaker over 
Western and Central-Eastern Africa, South Africa, Western North 
America and Northern Central America, West Central-Asia and East Asia 
and the northern part of continental South America. The negative trend 
over the Indian continent is weaker and not significant, while a signif
icant positive trend is shown over la Plata basin opposite to GEFF-ERA5. 
The CMIP5 models show similar trends to GEFF-ERA5 only in some 
regions like West Central-Asia and the northern part of continental 
South America, but with reduced spatial extent, with significant 

Table 4 
The Fire danger classes according to EFFIS.

Table 5 
Percentage of emerged burnable land areas for each Global Warming Level and 
for each ensemble.

CORDEX (% emerged) CMIP5(% emerged) CMIP6(% emerged)

GWL 1.0 3.44% 14.87% 9.23%
GWL 1.5 26.79% 47.29% 41.51%
GWL 2.0 46.59% 67.92% 53.00%
GWL 3.0 72.15% 71.96% 69.82%
GWL 4.0 79.75% 74.39% 81.75%
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opposite to GEFF-ERA5 positive trends in South America and Australia. 
CMIP6 shows a negative trend over the Sahel regions, in disagreement 
with the reanalysis, and positive weaker trends over Southern Africa, the 
northern part of continental South America, Western North America and 
Northern Central America, West Central-Asia and East-Asia and a sig
nificant negative trend over the Indian peninsula, similarly to ERA5. We 
calculated the percentage of grid points where the trends have the same 
sign as ERA5: 81.46% for CORDEX, 74.44% for CMIP5, and 71.32% for 
CMIP6.These results suggest that CORDEX-CORE has a more accurate 
representation of observed FWI trends. The CORDEX-CORE ensemble 
better captures both the direction and spatial distribution of changes 
compared to CMIP5 and CMIP6. While CMIP5 and CMIP6 reflect some 
regional patterns, their overall alignment with reanalysis is weaker, 
especially over Africa and South America. This suggests the use of the 
CORDEX ensemble for regional assessments of future fire weather. It 
also points out the greater uncertainties linked to global model 
ensembles.

3.2. FWI changes

We have used the IPCC AR6 regions (Iturbine et al., 2020), to assess 
regional changes of the FWI index and the four meteorological variables 
associated with it. We excluded the SAH, ARP, and ECA regions from the 
analysis because the percentage of grid points available for analysis after 
masking was lower than 30%. In Fig. 3 heatmaps show projected 
multi-model mean changes for each region and ensemble 

(CORDEX-CORE, CMIP5 and CMIP6). Variables include: (a) maximum 
temperature change (ΔTmax, ◦C), (b) precipitation change (ΔPr, %), (c) 
relative humidity change (ΔHurs, %), (d) near-surface wind change 
(ΔSfcWind, %), and (e) change in Fire Weather Index (ΔFWI, %) for all 
AR6 regions, at different global warming levels (GWLs) (rows from 
bottom to top correspond to 1.0 ◦C, 1.5 ◦C, 2.0 ◦C, 3.0 ◦C and 4.0 ◦C 
GWLs). A detailed list of the change values for each region and variable 
are shown in Table TS1-TS5 in the Supplementary Material. AR6 regions 
are ordered in the x-axis according to latitude (from north to south). 
Spatial analyses indicate a widespread increase in FWI values across all 
the regions. Changes in Fire Weather Index (FWI) align closely with the 
projected changes in the four meteorological variables needed for the 
FWI calculation. Increases in maximum air temperature (tasmax), 
reaching up to 6 ◦C, and a maximum decline between 4% and 12% in 
relative humidity (hurs) are associated with the stronger increase of FWI 
for all the 3 model ensembles and across the majority of regions.

To understand which of the four variables play a major role in 
impacting the projected fire weather index we performed a correlation 
of the FWI changes with the changes of the four variables used to 
calculate the index. We analyzed the statistically significant correlations 
at the 95% confidence level between the values in table TS1 with the 
values in tables TS2-TS5, finding that the main drivers are tasmax 
(correlation 0.68) and hurs (correlation − 0.57) and 0.19 and − 0.04 for 
wind and precipitation respectively. If we restrict the analysis to the 
tropical regions, the relative humidity becomes the main driver with a 
higher negative correlation (− 0.71), suggesting that lower humidity 
significantly increases fire risk, especially in tropical regions where 
moisture availability is a key limiting factor, followed by tasmax (0.66), 
by precipitation (− 0.32) and by wind (0.35). The opposite is observed 
when considering the subsets of regions in the extra-tropics, where the 
correlation is higher for tasmax (0.74 for the Northern-Extratropics, 0.69 
for the Southern Extratropics) and lower for the relative humidity hurs 
(− 0.50 for the Northern-Extratropics, − 0.56 for the Southern Extra
tropics). Precipitation correlations are lower in all the regions, in the 
Tropics (− 0.32) and Southern Extratropics (− 0.40), precipitation is 
negatively correlated with FWI, meaning that wetter conditions reduce 
fire risk, as expected. The decrease in relative humidity in the extra
tropics has a greater impact on fire weather conditions than the increase 
in wind speed in the tropics, as tropical regions generally maintain 
higher baseline humidity levels compared to extratropical regions. In 
the tropics, higher humidity can act as a limiting factor for fire spread, 
whereas in the extratropics, reductions in humidity can lead to signifi
cant drying of fuels, thereby increasing fire risk substantially.

At all warming levels, maximum temperatures are projected to in
crease, with more intense warming in northern regions like CNA, WNA, 
NEN, WCA,. The increase in ΔTasmax for tropical regions like CAR and 
SAS, as well as in South America (SES, SSA and SWS), is generally less 
extreme compared to northern regions (Fig. 3 and TS3).

The Mediterranean region (MED) shows a strong decrease in pre
cipitation as global warming levels increase for all the ensembles. South 
Asia (SAS) shows an increase in precipitation for the three ensembles, 
reflecting the complex effects of warming on monsoon patterns and 
confirming the negative FWI trends highlighted in Fig. 2. With a few 
exceptions, the overall trend shows a decrease in humidity across most 
regions (Fig. 3 and TS3). South America (NES, NSA, SAM), the Medi
terranean (MED), and Southern Africa (WSAF) experience the largest 
reductions in relative humidity (ΔHurs) as global warming intensifies. 
This decline may worsen arid conditions, heightening drought risks in 
areas that are already dry, thus increasing the fire risk too.

The strongest increases in FWI are projected for tropical areas such as 
NSA, NWS, SAM, SEA, driven by rising temperatures combined with 
reduced relative humidity and enhanced wind conditions. Substantial 
increases are also found in well known extra-tropical fire-prone areas 
such as MED (associated with reduced relative humidity, wind and 
precipitation), as well as WCE and WNA (associated with reduced 
relative humidity, wind and increases precipitation). These consistent 

Fig. 2. Fire Weather Index trend (left) for the historical period 1980–2023. The 
signal is masked-out by the unburned areas given by the GFED4 dataset (Giglio 
et al., 2013). Dashed lines cover areas where changes are not significant at the 
95% confidence level (Mann Kendall test for the ERA5, Student's t-test for 
the ensembles).
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signals across all warming levels indicate that these regions are partic
ularly vulnerable to future fire risk, even at lower warming levels.

As FWI changes in percentage may not be representative of its actual 
impact, we decided to express them in danger categories. Fig. 4 shows 
the projected changes in the FWI danger categories across various AR6 
regions at different global warming levels. For each AR6 region, the 
vertical bars represent the regional average FWI category for REF, 
GWL1.0, GWL1.5, GWL2.0, GWL3.0, and GWL4.0 (from bottom to top). 
A circle in the middle of each bar indicates the maximum category 
reached within the region. Its size scales with the highest FWI value 
recorded within that class, as specified in the legend. A table listing the 
danger categories and the maximum value of FWI for each region, is 
available as supplementary material (TS6). The three ensembles are 
quite in agreement in indicating that the regions with higher risk cate
gories are the West Africa (WAF), Central Africa (CAF), and Southern 
Africa (WSAF, ESAF), the Australian continent, the Mediterranean re
gion (MED) and the Western central Asia (WCA) where all ensembles 
project a substantial shift toward Extreme (50–70) or Very Extreme 
(>70) FWI categories at GWL3.0 and GWL4.0. In regions with histori
cally low fire risk (e.g., Northern Europe, Northeast Asia, and Northern 
North America), all ensembles consistently show only moderate or zero 
increases in FWI. CORDEX ensemble projects higher FWI categories 
compared to CMIP5 and CMIP6, especially in Africa, South America, and 
parts of Australia.

3.3. Regional patterns of time of emergence

Fig. 5 shows the time of emergence of anthropogenic climate change 

for each AR6 region and for each ensemble. Different shapes and colors 
represent the ToE according to the three different model ensembles: 
triangles for CORDEX models, circles for CMIP5 and squares for CMIP6 
models. The gradient of colors represents the year of emergence, span
ning from 2010 to present day (respectively from black to red in the 
colorbar) and from 2026 to 2040 (purple gradient). Darker colors signify 
earlier emergence, while lighter colors point to later emergence. From 
Fig. 5 it is evident that the climate change signal has already emerged in 
most areas of the globe including Europe, portions of South America, 
North America and South Africa and there is a consensus among all the 3 
model ensembles. This signal is consistent with the development of 
geographic regions experiencing heightened drought risk due to 
anthropogenic climate change (Greve and Seneviratne, 2015; Chiang 
et al., 2021). We find an earlier Time of Emergence (in the 2030s) in 
regions where fire is already a well-known issue, such as the Amazon 
forest, Central America, the Mediterranean, and South Africa. By 
contrast, in South-East Asia and North America the signal has not yet 
emerged. We assess the differences in emergence year among the three 
ensembles (CORDEX, CMIP5, CMIP6) across all AR6 regions. The dis
tribution of inter-ensemble year differences (bottom box in Fig. 5) shows 
a strong clustering within a few years (median ≈ 6 years), with only a 
few outliers displaying larger gaps. This indicates a robust agreement 
across models: all ensembles consistently suggest that the signal has 
already emerged or will emerge imminently in most regions. Although 
regional differences can arise from factors such as model resolution, 
physical parameterizations, and the representation of local processes, 
these timing offsets remain relatively small when placed in the context 
of centennial-scale climate projections. Importantly, all ensembles 

Fig. 3. Regional climate change signals across AR6 land regions under five global warming levels. Heatmaps show projected multi-model mean changes for each 
region and ensemble (CORDEX-CORE, CMIP5 and CMIP6). Variables include: (a) maximum temperature change (ΔTmax, ◦C), (b) precipitation change (ΔPr, %), (c) 
relative humidity change (ΔHurs, %), (d) near-surface wind change (ΔSfcWind, %), and (e) change in Fire Weather Index (ΔFWI, %).
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consistently indicate that the emergence of fire-weather risk is already 
occurring or imminent in these regions. This reinforces the robustness of 
our conclusions: despite differences in model characteristics, the emer
gence signal is strong and persistent across modelling frameworks.

3.4. Global Temperature of Emergence (GToE)

Fig. 6 displays the probability of exceeding five Global Warming 
Levels (GWLs) - 1.0 ◦C, 1.5 ◦C, 2.0 ◦C, 3.0 ◦C, and 4.0 ◦C - for the FWI 
across the three climate model ensembles. Each panel shows the likeli
hood of crossing a specific GWL threshold, with higher probabilities 

Fig. 4. FWI changes expressed in danger categories, for different global warming levels. For each AR6 region, vertical bars show the regional average FWI category 
for the REF, GWL1.0, GWL1.5, GWL 2.0, GWL 3.0, GWL 4.0 (from bottom to top). In the middle of each bar a circle shows the maximum FWI category in each region. 
The size of the circle is proportional to the maximum value of FWI in each category within the range reported in the legend.

Fig. 5. Time of emergence of anthropogenic climate change for the Fire Weather Index for each AR6 region for each ensemble. The box in the bottom shows the 
distribution of ensemble emergence year differences.
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(darker shades) indicating a stronger likelihood of fire weather inten
sification at a specific warming level. All the 3 ensembles have extensive 
areas where signals are emerging already at 1.5 ◦C, with a percentage of 
burnable land grid-points of 26.79%, 47.29% and 41.51% for CORDEX, 
CMIP5 and CMIP6 ensembles respectively. The percentages are then 
increasing up to 79.75%, 74.39% and 81.75% for the highest GWL 
(Table 5).

While informative, these global-average values mask significant 
spatial variations. We expanded the GToE analysis to the AR6 regions in 
order to investigate this regional dimensions. The resulting breakdown 
(see Figure FS2, showing trends in the percentage of emerged grid 
points for each AR6 region across increasing global warming levels) 
reveals consistent greographical patterns among the ensembles, while 
also identifying specific regions where ensemble disagreements are 
more pronounced. In regions characterized by the strongest fire danger 
increase (e.g., Southern Africa, Europe, North America, Northern 
Australia), the steepest changes are consistently found in the CORDEX- 
CORE results. This confirms that the sharper regional signals are pri
marily due to the downscaling approach rather than differences between 
CMIP5 and CMIP6 driving GCMs. The two global model ensembles show 
largely comparable behaviour in most regions. Overall we can say that 

there is a strong consensus among all model ensembles that fire weather 
risk is emerging as a hazard in many regions of the world starting from 
GWL 1.5 ◦C, due to climate change. It is interesting to note which are the 
regions where the signal does not emerge: India, the La Plata Basin, and 
the Horn of Africa, which is in line with the projected increases in pre
cipitation in those regions. The area with the greatest discrepancy be
tween the ensembles is Australia, where for CMIP6 the signal hardly 
emerges anywhere for any Global Warming Level (GWL).

3.5. Seasonal length

The lengthening of fire seasons is a notable phenomenon observed 
over the past decades in different regions of the world (Silva et al., 2023; 
Jain et al., 2017). Warmer temperatures contribute to earlier snowmelt 
and to the drying of vegetation, extending the period during which 
conditions are favorable for wildfires (Wotton and Flannigan, 1993; 
Wasserman and Mueller, 2023; Riley and Loehman, 2016). This pro
longed fire season amplifies the overall fire risk and challenges tradi
tional strategies for fire management. We define the fire weather season 
length as days per year exceeding the midrange point (average of 
maximum and minimum value of FWI), for each year in each grid cell 

Fig. 6. Probability of exceeding the GWL 1.0, 1.5, 2.0, 3.0 and 4.0 for the FWI. The signal is masked-out by the unburned areas given by the GFED4 dataset (Giglio 
et al., 2013).

R. Nogherotto et al.                                                                                                                                                                                                                             Weather and Climate Extremes 51 (2026) 100861 

8 



following Jolly et al. (2015).Fig. 7 shows regional significant trends 
(according to the Mann_Kendall test) of the season length of the FWI. 
Each region has a small subplot that highlights the trend over time, with 
the vertical axis representing the fire season length in days per year and 
the horizontal axis representing the years (1980–2099). The three lines 
in each regional subplot correspond to the three climate ensemble 
datasets. Across all regions, the fire season length shows a general in
crease over time, although the rate of increase varies by region and 
dataset. CORDEX generally projects a stronger trend and a larger in
crease in fire season length compared to CMIP5 and CMIP6 in most 
African regions, in South America, in Central and Eastern Asia and in the 
Mediterranean region. CMIP5 shows higher trends and larger increases 
in Central and North America and South-East Asia and Australia, while 
CMIP6 tends to have the most moderate trends and increases in mostly 
all the regions.

4. Discussion and conclusion

Anthropogenic climate change is already changing fire weather 
conditions globally, and this trend will accelerate over the next few 
decades, according to our multi-dataset and multi-threshold assessment. 
By integrating multiple global and regional climate model ensembles (CMIP5, 
CMIP6, and CORDEX-CORE) and applying a consistent Time of Emergence 
methodology based on signal-to-noise ratios, we provide the first global 
assessment of when fire-weather hazard becomes detectable across the AR6 
reference regions. The Fire Weather Index (FWI), a widely used 
operational indicator of atmospheric fire danger, responds 
strongly to changes in temperature, humidity, wind and fuel dry
ing. The mechanisms driving the increase in FWI are found to be com
mon to all the three ensembles and differ from the equator compared to 
the higher latitudes. In tropical regions, the main driver of the FWI in
crease is the reduction in relative humidity, whereas in extratropical 

regions, rising temperatures are the dominant contributing factor.
Although differing in intensity, timing, and likelihood of emergence, 

this study highlights a strong consensus across all available datasets 
indicating a widespread increase in fire weather hazard across all re
gions. In 39% of the AR6 regions, the signal has already emerged, and it 
is projected to emerge in all regions by 2040 at the latest. Furthermore 
26.79% of the burnable areas already exhibit an emergence of the signal 
at 1.5 ◦C global warming, increasing to 46.59%, 72.15%, and 79.75% at 
2 ◦C, 3 ◦C, and 4 ◦C of global warming, respectively (see Table 5).

Our analysis shows clear geographical differences in the Time of 
Emergence (ToE) of fire weather signals. Local emergence is already 
noticeable in areas like the Mediterranean, southern Africa, Amazonia, 
and large parts of North America's high latitudes at the beginning of the 
21st century. These regions overlap with previously identified climate 
hotspots for increasing drought risk due to human-caused climate 
change (Greve and Sonia, 2015; Gudmundsson and Sonia, 2016), 
demonstrating the strength of the signal across various hydroclimatic 
indicators.

As found in earlier studies, ToE tends to happen later at the local 
level than at broader regional levels (Maraun et al., 2013). This pattern 
reflects how internal variability decreases when averages are taken over 
larger areas. It shows why it's crucial to analyze both scales, since 
local-scale emergence is most relevant for impacts on ecosystems, fire 
management, and communities.

Spatial differences in ToE are closely linked to changes in precipi
tation. Regions with decreasing precipitation, such as the Mediterra
nean, Amazonia, southern Africa, Southeast Asia, and Australia, are 
among the first to reveal fire weather signals. In contrast, areas with 
increasing precipitation, like parts of Eurasia, North America, Argentina, 
and Northern Europe, tend to show later emergence. Under the high- 
emission RCP8.5 scenario, our results indicate a significant rise in 
wildfire risk in regions with strong seasonal rainfall patterns, including 

Fig. 7. Seasonal length for the AR6 regions, trends significant using Mann_Kendall test.
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the Mediterranean basin and monsoonal areas in the Americas, Asia, 
Africa, and Oceania.

Moreover, not only does the intensity of fire weather increase, but 
the fire season also becomes longer. This means that in some areas, 
wildfires may no longer occur only in a specific season but could become 
a nearly year-round risk.

FWI is based on raw climate model variables (temperature, relative 
humidity, wind, precipitation), which typically exhibit systematic bia
ses, especially in the humidity and wind fields. Since FWI responds 
nonlinearly to these inputs, such biases can propagate into the estimate 
and inflate or damp absolute fire-weather values (e.g., Bedia and Bhend, 
2015; Vitolo et al., 2019). A comprehensive bias correction across the 
full multi-model ensemble is, however, not feasible in this context, 
especially for wind speed and relative humidity, for which high-quality, 
long-term observational datasets with adequate spatial coverage are 
limited. In addition, wind and humidity biases can only be corrected by 
using advanced multivariate approaches in order to preserve physical 
covariances, which is beyond the scope of this study. Nonetheless, our 
analysis primarily focuses on relative changes and emergence timing of 
the climate signal, metrics that are less sensitive to systematic input 
biases than absolute index values.

Our analysis relies on a static mask of unburnable land cover derived 
from conditions at present. Vegetation distribution and fuel continuity 
will, however, change with climate. For instance, Arctic and sub-Arctic 
landscapes that today are dominated by tundra and sparse vegetation 
will continue to experience shrub expansion and biomass accumulation, 
thereby reducing fuel limitations over time (e.g., Mack et al., 2011; 
Mack et al., 2021). Conversely, ecotonal transitions along the 
dryland-grassland interface can foster enhanced fire activity where fuel 
loads increase following episodic wet periods ( Abatzoglou et al., 2021).

Accordingly, our estimates of geographic exposure to extreme fire 
weather, in particular within high-latitude regions and dynamic eco
tones, should be considered conservative lower-bound projections that 
do not yet account for future vegetation changes.

Although the FWI is a widely used, reliable indicator of fire-weather 
conditions, it represents only potential fire danger and does not directly 
quantify burned area or fire occurrence. Actual wildfire impacts also 
depend on ignition sources such as lightning and human activities, fuel 
continuity and loads, vegetation management, and fire suppression. 
Because of this, sensitivity of fire activity to shifts in fire-weather con
ditions can vary substantially across regions. Several studies have shown 
strong empirical relationships between FWI and burned area or fire 
occurrence, especially in areas with abundant ignition sources and 
continuous fuel conditions that are receptive to burning (Abatzoglou 
et al., 2018; Turco et al., 2018). By contrast, areas with limited ignitions, 
or where management reduces fuel continuity on relatively fast time
frames, may reveal weaker or lagged responses to increased fire danger 
conditions (e.g., parts of Northern Europe and East Asia). Our findings 
therefore indicate that the projected increases in FWI, particularly 
across fire-prone regions such as the Mediterranean, southern Africa, 
Southern America and Southern Australia, are likely to be translated 
into increased fire risk and impacts; elsewhere, more moderate effects 
are likely to ensue, unless changes in ignition or fuel conditions occur in 
parallel. Recognition of these interactions is paramount for the inter
pretation of our projections and underlines the need for integrated 
adaptation measures that tackle not only climate-driven fire danger but 
also human exposure, fuel dynamics, and risk governance.

Our findings have several implications. For example, more human 
settlements, especially in tropical Africa, the Amazon basin, the eastern 
United States, and western North America, are likely to face unprece
dented wildfire risks at the wildland-urban interface. This raises threats 
to lives, infrastructure, and economies. By knowing when and where fire 
weather conditions are likely to develop, gives policymakers and fire 
management agencies a critical opportunity to prepare. Anticipating the 
ToE allows for timely implementation of targeted strategies, such as 
strengthening prevention programs, updating land-use and building 

codes, and increasing investments in firefighting resources. Region- 
specific ToE estimates also help create better early warning systems 
and adapt fire danger rating systems, ensuring that preparedness keeps 
pace with changing fire patterns.

Our results show clear timelines that should inform adaptation 
planning. In regions where emergence of strong fire-weather is projected 
already by the 2030s, notably Southern Europe and southern Africa, 
investments in preparedness, such as upgrading fire-suppression ca
pacity, hardening critical infrastructure, and developing community 
evacuation plans, must be prioritized over the next decade. By contrast, 
high-latitude parts of North America and portions of central Asia have a 
key opportunity to implement long-term strategies such as landscape 
fuel management, resilient land-use planning, and ecosystem restora
tion, in advance of emergence later in the century. Adaptation measures 
uniquely tailored to these different temporal trajectories will better 
mitigate future fire impacts under accelerating climate change.
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