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ABSTRACT

Wildfires are expected to become more intense due to global warming. This change will significantly affect ecosystems and communities. We examine when and
where fire weather conditions go beyond natural variability by using the Canadian Fire Weather Index (FWI). We analyze data from CORDEX-CORE and EURO-
CORDEX regional simulations, along with CMIP5 and CMIP6 global models, under the RCP8.5 and SSP5-8.5 scenarios. The study spans from 1980 to 2099 and
focuses on Global Warming Levels (GWLs) ranging from +1.5 to +4.0 °C compared to pre-industrial climate.

When we evaluate against GEFF-ERA5 reanalysis, we find that the CORDEX ensemble better reflects historical FWI trends compared to CMIP5 and CMIP6.
Projections show widespread increases in FWI, primarily due to higher temperatures and lower relative humidity, along with regional impacts from precipitation and
wind. The danger class analyses indicate a shift toward Extreme and Very Extreme conditions in the Mediterranean, southern Africa, South America, and Australia,
occurring already with 2-3 °C of warming.

The Time of Emergence (ToE) analysis reveals that human influence is already detectable in 39% of the AR6 regions, to become 81% by 2030. The Global
Temperature of Emergence (GToE) suggests that over 25% of burnable land areas will cross emergence thresholds at +1.5 °C, increasing to over 70% at +3.0 °C. The
length of the fire season is also expected to increase in most regions. These findings highlight the urgent need for strategies to manage wildfire risk and adapt to these
changes globally.

1. Introduction

Key points
Wildfires represent a growing and severe threat to ecosystems,

e Regional climate models (CORDEX) more accurately reproduce
historical fire-weather conditions compared to CMIP5/CMIP6
global models.

e Widespread increases in extreme fire-weather conditions
emerge under 2-3 °C of global warming, especially in the
Mediterranean, southern Africa, Amazonia, Central America
and Southern Australia.

e Human influence on fire weather is already detectable in ~40%

of ARG regions, increasing to >80% by 2030.

Fire season length is projected to increase in most fire-prone

regions, amplifying risks to ecosystems and communities.

Results provide geographically- and temporally-specific guid-

ance for wildfire adaptation planning.

communities, and economies worldwide. Understanding drivers of fire
activity is crucial for developing effective strategies in wildfire man-
agement, mitigation, and adaptation in a changing climate. Over the
past half century, global fire activity has been documented to increase in
several parts of the world (Kasischke and Turetsky, 2006; Westerling,
2016).

This upward trend in wildfires is attributed to a complex interplay of
factors, including climate change, land-use changes, and human activ-
ities. Weather and climate play a crucial role in determining the fire
regime of an area (Viegas and Viegas, 1994; Pyne, 1996; Skinner et al.,
1999; Kunkel, 2001; Viegas et al., 2001; Pereira et al., 2005). Therefore,
shift in climatic conditions can significantly enhance wildfire activity in
many areas.

To better understand the meteorological drivers that determine a
persistent fire activity once ignition has occurred, the scientific com-
munity has been extensively studying fire behavior. It is intuitive that
dry, live fuels tend to ignite more easily than moist fuel when low

* Corresponding author. Institute of Atmospheric Sciences and Climate (CNR-ISAC, Italy), Italy

E-mail address: r.nogherotto@isac.cnr.it (R. Nogherotto).

https://doi.org/10.1016/j.wace.2026.100861

Received 22 October 2025; Received in revised form 4 December 2025; Accepted 23 January 2026

Available online 28 January 2026

2212-0947/© 2026 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


https://orcid.org/0000-0003-1718-542X
https://orcid.org/0000-0003-1718-542X
mailto:r.nogherotto@isac.cnr.it
www.sciencedirect.com/science/journal/22120947
https://www.elsevier.com/locate/wace
https://doi.org/10.1016/j.wace.2026.100861
https://doi.org/10.1016/j.wace.2026.100861
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Nogherotto et al.

Table 1
CORDEX-CORE and EURO-CORDEX RCMs and their corresponding driving GCM
used in this study.

Driving GCM Ensemble CORDEX-CORE 0.22 CORDEX region
CNRM-CM5 rlilpl GERICS-REM02015 EUR
CNRM-CM5 rlilpl SMHI-RCA4 EUR
EC-EARTH rlilpl DMI-HIRHAMS EUR
EC-EARTH rlilpl KNMI-RACMO22E EUR
EC-EARTH rlilpl SMHI-RCA4 EUR
EC-EARTH r12ilpl CLMcom-ETH- EUR
COSMO-crCLIM-v1-1
EC-EARTH r12ilpl DMI-HIRHAM5 EUR
EC-EARTH r12ilpl KNMI-RACMO22E EUR
EC-EARTH r12ilpl MOHC-HadREM3- EUR
GA7-05
EC-EARTH r12ilpl SMHI-RCA4 EUR
EC-EARTH r3ilpl KNMI-RACMO22E EUR
EC-EARTH r3ilpl SMHI-RCA4 EUR
GFDL- rlilpl ICTP-RegCM4-7 CAM, NAM
ESM2M
HadGEM2- rlilpl CNRM-ALADIN63 EUR
ES
HadGEM2- rlilpl ICTP-RegCM4-6 EUR, AUS, AFR, CAM, EAS,
ES SAM, SEA, NAM
HadGEM2- rlilpl KNMI-RACMO22E EUR
ES
HadGEM2- rlilpl MOHC-HadREM3- EUR
ES GA7-05
HadGEM2- rlilpl GERICS-REM02015 AUS, AFR, CAM, EAS, NAM,
ES SAM, SEA, WAS
IPSL-CM5A- rlilpl GERICS-REM02015 EUR
MR
IPSL-CM5A- rlilpl KNMI-RACMO22E EUR
MR
MIROC5 rlilpl ICTP-RegCM4-6 WAS
MPI-ESM-LR rlilpl CLMcom-ETH- EUR
COSMO-crCLIM-v1-1
MPI-ESM-LR rlilpl CNRM-ALADIN63 EUR
MPI-ESM-LR rlilpl DMI-HIRHAM5 EUR
MPI-ESM-LR rlilpl ICTP-RegCM4-6 EUR, NAM
MPI-ESM-LR rlilpl KNMI-RACMO22E EUR
MPI-ESM-LR rlilpl SMHI-RCA4 EUR

MPI-ESM-LR rlilpl GERICS-REM02015 AFR, AUS, CAM, EAS, EUR,

NAM, SAM, SEA, WAS

MPI-ESM-LR r2ilpl CLMcom-ETH- EUR
COSMO-crCLIM-v1-1
MPI-ESM-LR r2ilpl SMHI-RCA4 EUR
MPI-ESM-LR r3ilpl GERICS-REM02015 EUR
MPI-ESM-LR r3ilpl SMHI-RCA4 EUR

MPI-ESM- rlilpl ICTP-RegCM4-6 AFR, AUS, CAM, EAS, SAM,
MR SEA, WAS
NorESM1-M rlilpl CLMcom-ETH- EUR
COSMO-crCLIM-v1-1

NorESM1-M rlilpl GERICS-REM02015 EUR, AUS, AFR,CAM, EAS,
NAM, SAM, SEA, WAS
KNMI-RACMO22E EUR

SMHI-RCA4 EUR

ICTP-RegCM4-6 EUR, AUS, AFR, EAS, SAM,

NorESM1-M rlilpl
NorESM1-M rlilpl
NorESM1-M rlilpl

SEA, WAS
Table 2
CMIP5 Models used in this study.
CMIP5 Ensemble
NorESM1-M rlilpl
MPI-ESM-MR rlilpl
MPI-ESM-LR rlilpl
HadGEM2-ES rlilpl

humidity and high temperature are combined. Additionally, compared
to situations when wind primarily blows in one prevailing direction,
considerable wind variability supports the spread over broader areas. As
a result of climate change, fire weather and the likelihood of fire events
are expected to rise in many regions around the world, including areas
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that have historically been less prone to wildfires (Masson-Delmotte
et al.). Meteorologically, the risk of fire ignition rises with higher tem-
peratures, stronger winds, and lower relative humidity. Projected
changes in these variables are expected to more than double the fre-
quency of extreme fire weather events by the end of the 21st century
(Touma et al., 2021), while also increasing the duration, severity, and
geographic reach of fires (Bowman et al., 2020; Fargeon et al., 2020;
Ruffault et al., 2020; De Rigo et al., 2017).

It is possible to study projections of fire risk under climate change by
means of fire indices, such as the Canadian Forest Fire Weather Index
(FWI; van Wagner, 1987), the U.S. Forest Service's National Fire Danger
Rating System (NFDRS; Larry S. et al., 1984), or Australia's McArthur
Rating System (Mark 5; McArthur, 1967). These indices are statistical
models that capture the relationship between fire occurrences and
weather conditions. They have been shown to provide reliable assess-
ments of fire danger in both short- and long-term weather forecasts
worldwide (Di Giuseppe et al., 2016).

In this study we use the FWI from the Canadian Forest Fire Weather
Index System, one of the most extensively used models to estimate fire
danger globally (as noted in Di Giuseppe et al., 2016; Field, 2020; de
Groot et al., 2013). The FWI is particularly suitable in this context
because it represents potential fire intensity associated with fuel dryness
and fire weather conditions, and is independent of land cover and
biomass type. It is highly sensitive to changes in temperature, precipi-
tation, humidity, and wind speed (Flannigant et al., 2016) and shows
strong empirical associations with burned areas across extensive regions
of the world (Abatzoglou et al., 2018).

Earlier research (e.g., Flannigan et al., 2013) has examined changes
in global fire weather metrics under anthropogenic climate change using
global climate models (Bedia and Bhend, 2015; Williams and Abatzo-
glou, 2016). However only a few studies have explicitly deterined when
or whether observed changes can be attributed to anthropogenic in-
fluences rather than internal climate variability (Abatzoglou et al.,
2016).

In this study, we instead analyze the full set of high-resolution
regional climate CORDEX-CORE simulations, enabling a more region-
specific assessment of climate-driven shifts in fire weather. Regional
climate models better represent local-scale processes and feedbacks that
strongly influence changes in precipitation, humidity and wind patterns,
key drivers of fire danger.

We evaluate the results within the time of emergence (ToE) frame-
work. The ToE concept is central to understand when the anthropogenic
climate-change signal becomes statistically distringuishable from the
background natural climate variability. It therefore provides insight into
the timeframe over which human-driven changes in fire-weather con-
ditions become unavoidable and relevant for adaptation planning.

2. Data and methods
2.1. CORDEX-CORE climate projections

In this analysis, we use simulations from 31 CORDEX-CORE simu-
lations (Table 1) at 0.22° resolution over the NAM, SAM, CAM, AFR,
AUS, WAS, EAS and SEA domains, and at 0.11° resolution over the
EURO-CORDEX domain. The second ensemble used for comparison
consists of the driving global simulations used for the CORDEX-CORE
experiments (Table 2), from the Fifth Phase of the Coupled Model
Intercomparison Project CMIP5 (Taylor et al.,, 2012). As a third
ensemble, we analyze 7 simulations from CMIP6 (Eyring et al., 2016)
(Table 3). The choice of the members of the CMIP6 ensemble is a
compromise between the models’ availability at the time of the analysis
and the coverage of the climate sensitivity spread of the models. All
CORDEX-CORE, EURO-CORDEX and CMIP5 simulations follow the
RCP8.5 scenario (Riahi et al.,, 2011), while SSP585 (Shared
Socio-Economic Pathways, Riahi, 2017) is used for the CMIP6 ensemble.
Most of the analysis was conducted based on the distribution of IPCC
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ARG regions (Iturbine et al., 2020), shown in Fig. S1 (Table 2).

2.2. The fire weather index

The Fire Weather Index (FWI) is a component of the Canadian Forest
Fire Danger Rating System (Van Wagner, 1987). Although originally
developed and calibrated to characterize fire behavior in a jack pine
(Pinus banksiana) stands typical of Canadian boreal forests, its compu-
tational efficiency and limited input requirements have led to wide-
spread adoption in various countries. The index has demonstrated good
performance even in ecosystems markedly different from the boreal
environment, as indicated by studies such as Di Giuseppe et al. (2016)
and De Rigo et al. (2017). The European Centre for Medium-Range
Weather Forecasts (ECMWF) has played an important role in
advancing our understanding of weather-related risks, including the
increasingly pressing issue of wildfires. The Global ECMWF Fire Forecast
(GEFF) System developed by ECMWF (Di Giuseppe et al., 2020) supports
the assessment and prediction of fire danger conditions by integrating
relevant meteorological and environmental factors. The FWI calculation
solely relies on atmospheric variables, without incorporating informa-
tion about the current vegetation conditions. This approach estimates
the physical potential for fire ignition and spread driven by climate
forcing. As such, the FWI provides a robust climatic indicator of fire
danger under global warming, independent of transient changes in
vegetation cover. The FWI system follows a modular structure (see
Fig. 1), where each component builds upon fuel moisture conditions to
determine the potential for fire spread and intensity. Three fuel moisture
components quantitatively track drying processes at different organic
layer depths: the Fine Fuel Moisture Code (FFMC) represents the rapid
response of fine surface fuels to atmospheric forcing and a primary
driver of ignition likelihood; the Duff Moisture Code (DMC) captures the
moisture status of intermediate duff-layers, which dry more slowly than
surface fuels and therefore reflect persisent changes in weather condi-
tions; the Drought Code (DC) quantifies long-term seasonal dryness in
deep, compact organic matter. These moisture codes directly influence
fuel availability. Fire behavior potential is then derived through two
intermediate indices: the Initial Spread Index (ISI), which combines
FFMC with wind speed to represent the expected rate of fire spread
under given conditions, and the Build-Up Index (BUI), which integrates
DMC and DC to estimate the total amount of combustible fuel available
for sustained burning. Finally, the Fire Weather Index (FWI)
non-linearly combines ISI and BUI to represent the potential fire in-
tensity. Through this hierarchical structure, the FWI links meteorolog-
ical variability to fuel dryness and the capacity for fast-spreading,

TEMPERATURE,
RELATIVE HUMIDITY,

Climatological

Variables WIND,

RAIN

Fire Moisture
Codes

FINE FUEL
MOISTURE CODE
(FFMC)

' WIND I

Fire Behaviour INITIAL SPREAD BUILT UP INDEX
Indices INDEX (IS1) (8UI)
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high-intensity fires (Van Wagner, 1987; Wotton, 2009).

For the sake of conciseness, we have just briefly reviewed the
fundamental concepts behind the FWI system. For a comprehensive
explanation of the FWI system, the interactions between the various
components, and how these are employed in fire management, we refer
to Van Wagner (1987) and Wotton (2009).

Indicators of fire danger are provided by the Fire Weather Index
system based on four weather factors: temperature, relative humidity,
precipitation, and wind speed (Van Wagner, 1987). The FWI requires
daily 24-hr accumulated precipitation as well as temperature, humidity,
and wind speed at 1 200 local time. However, due to challanges in
obtaining both observed and modeled data at 12:00 local time, many
studies compute the FWI on a daily basis (Carvalho et al., 2010; Gian-
nakopoulos et al., 2009; Moriondo et al., 2006, Bento et al., 2023). To
represent the worst case scenario we use daily maximum temperature,
daily wind speed, daily accumulated precipitation and daily relative
humidity for historical (1980-2005) and future (2006-2099) experi-
ments. Regions where more than 80% of their existing land cover is
classified as water, snow/ice, or barren/sparsely vegetated by MODIS
land cover type product (Friedl et al., 2010) are considered unburnable
and masked out of the analysis (see Fig. S1).

2.3. Estimating fire danger using FWI danger classes

The Fire Weather Index was calculated on a daily basis for each
calendar year (1 January to 31 December) over the period 1980-2099
for all climate model ensemble members. To facilitate the interpretation
of the FWI, we used six fire danger classes proposed by the European
Forest Fire Information System (EFFIS; EFFIS, 2021), each class repre-
senting a different level of wildfire risk: low, medium, high, very high,
extreme, very extreme (see Table 4). The FWI danger classes are
essential tools for wildfire management and prevention strategies. They

Table 3

CMIP6 models used in this study.
CMIP6 Ensemble
CNRM-CM6-1 rlilplf2
EC-Earth3-Veg rlilp1f2
CanESM5 rlilplf2
MIROC6 rlilplf2
HadGEM3-GC31-LL rlilplf2
MRI-ESM2-0 rlilplf2
NorESM2-LM rlilplf2

TEMPERATURE,
RELATIVE HUMIDITY,

TEMPERATURE,

RAIN

WIND,
RAIN

DUFF MOISTURE DROUGHT CODE
CODE (DMC) (0C)

FIRE WEATHER INDEX
(FWI)

Fig. 1. Flowchart of the Canadian Forest Fire Weather Index (FWI) system used in this study (Van Wagner, 1987).
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Table 4
The Fire danger classes according to EFFIS.
FWI category FWI values
LOW 0-11.2
MODERATE 11.2-21.3
HIGH 21.3-38
38-50
EXTREME 50-70
VERY EXTREME >=70

Table 5
Percentage of emerged burnable land areas for each Global Warming Level and
for each ensemble.

CORDEX (% emerged) CMIP5(% emerged) CMIP6(% emerged)

GWL 1.0 3.44% 14.87% 9.23%
GWL 1.5 26.79% 47.29% 41.51%
GWL 2.0 46.59% 67.92% 53.00%
GWL 3.0 72.15% 71.96% 69.82%
GWL 4.0 79.75% 74.39% 81.75%

provide actionable information to guide preparedness and response
measures, such as resource allocation, fire restricions, and public saftey
notifications, with the goal of reducing wildfire impacts on ecosystems
and society.

2.4. Time of Emergence (ToE)

The concept of “time of emergence” is crucial in various fields,
ranging from climate science to technological innovation. In climate
science, the ToE is used as an indicator of when the forced signal of
climate change becomes distinguishable from the background noise of
natural variability. Specifically, TOE marks the moment when a given
climate variable, such as temperature, precipitation, or in our case fire-
weather, exceeds the range of variability observed under historical
conditions, making the influence of anthropogenic climate change
detectable. In this study, we define TOE as the year when the increase in
the Fire Weather Index (FWI) rises above the upper bound of its internal-
variability envelope. The envelope is computed using +2 standard de-
viations of the climate-model ensemble distribution over a reference
historical period (1980-2010). TOE is then identified as the first year in
which the 30-year running mean of the ensemble-mean FWI exceeds this
upper bound.

This approach is consistent with the widely used +2¢ detectability
criterion, approximating a 95% confidence range for internal variability
(e.g., Hawkins and Sutton, 2012). By requiring the forced signal to
exceed this threshold, we ensure that emergence is attributed to
anthropogenic climate change rather than fluctuations expected under
natural variability alone. To assess the robustness of our TOE estimates,
we complement this confidence-interval method with a signal-to-noise
(S/N) threshold analysis, where emergence is detected once the forced
change in FWI exceeds a multiple of the simulated interannual vari-
ability. We use S/N > 1 as our central criterion (signal larger than noise,
as previously done by Hawkins and Sutton, 2012; Hawkins et al., 2020;
Dosio et al., 2025).

2.5. Global Temperature of Emergence (GToE)

Following Hawkins and Sutton (2012), we also evaluate the
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emergence of fire-weather signals as a function of global warming rather
than time, using the Global Temperature of Emergence (GToE) frame-
work. Unlike ToE, which depends on the evolution of emissions in time,
GToE expresses the detectability of change directly as a funcion of global
mean surface temperature increase relative to pre-industrial conditions.
This provies a scenario-independent metric that is more closely aligned
with policy targets such as for example the Paris Agreement. GToE is
defined on the basis of thresholds of temperature, the Global Warming
Levels, expressed as changes in surface global temperature relative to
the pre-industrial period (1850-1900). In the present work, we assess
emergence at five Global Warming Levels (GWLs): 1.0°, 1.5 °C, 2.0 °C,
3.0 °C, and 4.0 °C. Consistent with the S/N-based detectability approach
outlined in Section 2.4, we diagnose emergence for each model when the
forced FWI signal exceeds internal variability. To ensure robustness,
following the IPCC AR6 WGI Atlas metodology for defining robust
climate change signals (Cross-Chapter Box Atlas.1), a region is consid-
ered to have emerged when (i) at least 66% of models satisfy S/N > 1, to
ensure consistent detection of signals emerging from natural variability,
and (ii) at least 80% of them agree on the sign of change, to reduce false
positives while recognizing increased multi-model agreement in future
projections. The signal-to-noise ratio is estimated for each model from
the ratio between the change and the standard deviation of the reference
period 1980-2010. This complementary diagnostic allows us to identify
not only when but under what level of global warming fire-weather
conditions become detectably more sever, supporting impact-relevant
interpretation of the results, highlighting the urgency of adaptation in
tregions where emergence occurs already below 1.5 °C of global
warming.

3. Results
3.1. Validation vs GEFF-ERA5

The FWI is not a directly observable quantity, being an index
quantifying potential danger. It can be however validated against
existing reanalysis products. This section examines how the FWI ob-
tained using CORDEX-CORE, CMIP5 and CMIP6 data compares to
reanalysis products, such as the data from the Global ECMWF Fire
Forecast model (hereafter GEFF-ERAS5; Vitolo et al., 2019). Developed
by the European Forest Fire Information System under the Copernicus
Emergency Management Service, GEFF-ERAS provides daily, contin-
uous fire weather data with a spatial resolution of 0.25° across the global
land surface. GEFF-ERAS is based on input fields from the ERA5 Rean-
alysis (ERAS; Hersbach et al., 2020) and covers the period from 1979 to
the present.

Before investigating the climate change signal on the FWI, we are
interested in assessing the model's ability in reproducing the observed
trend in fire-weather conditions. Fig. 2 shows the spatial patterns of
statistically significant linear trends over 1980-2005 of the three en-
sembles analyzed. Hatched lines cover areas where changes are not
significant at the 95% confidence level (Student's t-test). Areas of large
positive trends are seen over all the continents for the reanalysis, more
intense on continental South America, Central-Eastern Africa, South
Africa, Western North America and Northern Central America, West
Central-Asia and East Asia; a negative trend is present over the Indian
peninsula. The spatial pattern is globally well represented by the
CORDEX-CORE ensemble, that is overall more consistent with GEFF-
ERAS5 in representing a significant positive trend but weaker over
Western and Central-Eastern Africa, South Africa, Western North
America and Northern Central America, West Central-Asia and East Asia
and the northern part of continental South America. The negative trend
over the Indian continent is weaker and not significant, while a signif-
icant positive trend is shown over la Plata basin opposite to GEFF-ERAS5.
The CMIP5 models show similar trends to GEFF-ERAS only in some
regions like West Central-Asia and the northern part of continental
South America, but with reduced spatial extent, with significant
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Fig. 2. Fire Weather Index trend (left) for the historical period 1980-2023. The
signal is masked-out by the unburned areas given by the GFED4 dataset (Giglio
et al., 2013). Dashed lines cover areas where changes are not significant at the
95% confidence level (Mann Kendall test for the ERAS5, Student's t-test for
the ensembles).

opposite to GEFF-ERA5 positive trends in South America and Australia.
CMIP6 shows a negative trend over the Sahel regions, in disagreement
with the reanalysis, and positive weaker trends over Southern Africa, the
northern part of continental South America, Western North America and
Northern Central America, West Central-Asia and East-Asia and a sig-
nificant negative trend over the Indian peninsula, similarly to ERA5. We
calculated the percentage of grid points where the trends have the same
sign as ERA5: 81.46% for CORDEX, 74.44% for CMIP5, and 71.32% for
CMIP6.These results suggest that CORDEX-CORE has a more accurate
representation of observed FWI trends. The CORDEX-CORE ensemble
better captures both the direction and spatial distribution of changes
compared to CMIP5 and CMIP6. While CMIP5 and CMIP6 reflect some
regional patterns, their overall alignment with reanalysis is weaker,
especially over Africa and South America. This suggests the use of the
CORDEX ensemble for regional assessments of future fire weather. It
also points out the greater uncertainties linked to global model
ensembles.

3.2. FWI changes

We have used the IPCC AR6 regions (Iturbine et al., 2020), to assess
regional changes of the FWI index and the four meteorological variables
associated with it. We excluded the SAH, ARP, and ECA regions from the
analysis because the percentage of grid points available for analysis after
masking was lower than 30%. In Fig. 3 heatmaps show projected
multi-model mean changes for each region and ensemble
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(CORDEX-CORE, CMIP5 and CMIP6). Variables include: (a) maximum
temperature change (ATmax, °C), (b) precipitation change (APr, %), (c)
relative humidity change (AHurs, %), (d) near-surface wind change
(ASfcWind, %), and (e) change in Fire Weather Index (AFWI, %) for all
ARG regions, at different global warming levels (GWLs) (rows from
bottom to top correspond to 1.0 °C, 1.5 °C, 2.0 °C, 3.0 °C and 4.0 °C
GWLs). A detailed list of the change values for each region and variable
are shown in Table TS1-TS5 in the Supplementary Material. AR6 regions
are ordered in the x-axis according to latitude (from north to south).
Spatial analyses indicate a widespread increase in FWI values across all
the regions. Changes in Fire Weather Index (FWTI) align closely with the
projected changes in the four meteorological variables needed for the
FWI calculation. Increases in maximum air temperature (tasmax),
reaching up to 6 °C, and a maximum decline between 4% and 12% in
relative humidity (hurs) are associated with the stronger increase of FWI
for all the 3 model ensembles and across the majority of regions.

To understand which of the four variables play a major role in
impacting the projected fire weather index we performed a correlation
of the FWI changes with the changes of the four variables used to
calculate the index. We analyzed the statistically significant correlations
at the 95% confidence level between the values in table TS1 with the
values in tables TS2-TS5, finding that the main drivers are tasmax
(correlation 0.68) and hurs (correlation —0.57) and 0.19 and —0.04 for
wind and precipitation respectively. If we restrict the analysis to the
tropical regions, the relative humidity becomes the main driver with a
higher negative correlation (—0.71), suggesting that lower humidity
significantly increases fire risk, especially in tropical regions where
moisture availability is a key limiting factor, followed by tasmax (0.66),
by precipitation (—0.32) and by wind (0.35). The opposite is observed
when considering the subsets of regions in the extra-tropics, where the
correlation is higher for tasmax (0.74 for the Northern-Extratropics, 0.69
for the Southern Extratropics) and lower for the relative humidity hurs
(—0.50 for the Northern-Extratropics, —0.56 for the Southern Extra-
tropics). Precipitation correlations are lower in all the regions, in the
Tropics (—0.32) and Southern Extratropics (—0.40), precipitation is
negatively correlated with FWI, meaning that wetter conditions reduce
fire risk, as expected. The decrease in relative humidity in the extra-
tropics has a greater impact on fire weather conditions than the increase
in wind speed in the tropics, as tropical regions generally maintain
higher baseline humidity levels compared to extratropical regions. In
the tropics, higher humidity can act as a limiting factor for fire spread,
whereas in the extratropics, reductions in humidity can lead to signifi-
cant drying of fuels, thereby increasing fire risk substantially.

At all warming levels, maximum temperatures are projected to in-
crease, with more intense warming in northern regions like CNA, WNA,
NEN, WCA,. The increase in ATasmax for tropical regions like CAR and
SAS, as well as in South America (SES, SSA and SWS), is generally less
extreme compared to northern regions (Fig. 3 and TS3).

The Mediterranean region (MED) shows a strong decrease in pre-
cipitation as global warming levels increase for all the ensembles. South
Asia (SAS) shows an increase in precipitation for the three ensembles,
reflecting the complex effects of warming on monsoon patterns and
confirming the negative FWI trends highlighted in Fig. 2. With a few
exceptions, the overall trend shows a decrease in humidity across most
regions (Fig. 3 and TS3). South America (NES, NSA, SAM), the Medi-
terranean (MED), and Southern Africa (WSAF) experience the largest
reductions in relative humidity (AHurs) as global warming intensifies.
This decline may worsen arid conditions, heightening drought risks in
areas that are already dry, thus increasing the fire risk too.

The strongest increases in FWI are projected for tropical areas such as
NSA, NWS, SAM, SEA, driven by rising temperatures combined with
reduced relative humidity and enhanced wind conditions. Substantial
increases are also found in well known extra-tropical fire-prone areas
such as MED (associated with reduced relative humidity, wind and
precipitation), as well as WCE and WNA (associated with reduced
relative humidity, wind and increases precipitation). These consistent
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Fig. 3. Regional climate change signals across AR6 land regions under five global warming levels. Heatmaps show projected multi-model mean changes for each
region and ensemble (CORDEX-CORE, CMIP5 and CMIP6). Variables include: (a) maximum temperature change (ATmax, °C), (b) precipitation change (APr, %), (c)
relative humidity change (AHurs, %), (d) near-surface wind change (ASfcWind, %), and (e) change in Fire Weather Index (AFWI, %).

signals across all warming levels indicate that these regions are partic-
ularly vulnerable to future fire risk, even at lower warming levels.

As FWI changes in percentage may not be representative of its actual
impact, we decided to express them in danger categories. Fig. 4 shows
the projected changes in the FWI danger categories across various AR6
regions at different global warming levels. For each AR6 region, the
vertical bars represent the regional average FWI category for REF,
GWL1.0, GWL1.5, GWL2.0, GWL3.0, and GWL4.0 (from bottom to top).
A circle in the middle of each bar indicates the maximum category
reached within the region. Its size scales with the highest FWI value
recorded within that class, as specified in the legend. A table listing the
danger categories and the maximum value of FWI for each region, is
available as supplementary material (TS6). The three ensembles are
quite in agreement in indicating that the regions with higher risk cate-
gories are the West Africa (WAF), Central Africa (CAF), and Southern
Africa (WSAF, ESAF), the Australian continent, the Mediterranean re-
gion (MED) and the Western central Asia (WCA) where all ensembles
project a substantial shift toward Extreme (50-70) or Very Extreme
(>70) FWI categories at GWL3.0 and GWL4.0. In regions with histori-
cally low fire risk (e.g., Northern Europe, Northeast Asia, and Northern
North America), all ensembles consistently show only moderate or zero
increases in FWL. CORDEX ensemble projects higher FWI categories
compared to CMIP5 and CMIP6, especially in Africa, South America, and
parts of Australia.

3.3. Regional patterns of time of emergence

Fig. 5 shows the time of emergence of anthropogenic climate change

for each ARG region and for each ensemble. Different shapes and colors
represent the ToE according to the three different model ensembles:
triangles for CORDEX models, circles for CMIP5 and squares for CMIP6
models. The gradient of colors represents the year of emergence, span-
ning from 2010 to present day (respectively from black to red in the
colorbar) and from 2026 to 2040 (purple gradient). Darker colors signify
earlier emergence, while lighter colors point to later emergence. From
Fig. 5 it is evident that the climate change signal has already emerged in
most areas of the globe including Europe, portions of South America,
North America and South Africa and there is a consensus among all the 3
model ensembles. This signal is consistent with the development of
geographic regions experiencing heightened drought risk due to
anthropogenic climate change (Greve and Seneviratne, 2015; Chiang
et al., 2021). We find an earlier Time of Emergence (in the 2030s) in
regions where fire is already a well-known issue, such as the Amazon
forest, Central America, the Mediterranean, and South Africa. By
contrast, in South-East Asia and North America the signal has not yet
emerged. We assess the differences in emergence year among the three
ensembles (CORDEX, CMIP5, CMIP6) across all AR6 regions. The dis-
tribution of inter-ensemble year differences (bottom box in Fig. 5) shows
a strong clustering within a few years (median ~ 6 years), with only a
few outliers displaying larger gaps. This indicates a robust agreement
across models: all ensembles consistently suggest that the signal has
already emerged or will emerge imminently in most regions. Although
regional differences can arise from factors such as model resolution,
physical parameterizations, and the representation of local processes,
these timing offsets remain relatively small when placed in the context
of centennial-scale climate projections. Importantly, all ensembles
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Fig. 4. FWI changes expressed in danger categories, for different global warming levels. For each ARG region, vertical bars show the regional average FWI category
for the REF, GWL1.0, GWL1.5, GWL 2.0, GWL 3.0, GWL 4.0 (from bottom to top). In the middle of each bar a circle shows the maximum FWI category in each region.
The size of the circle is proportional to the maximum value of FWI in each category within the range reported in the legend.
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Fig. 5. Time of emergence of anthropogenic climate change for the Fire Weather Index for each AR6 region for each ensemble. The box in the bottom shows the

distribution of ensemble emergence year differences.

consistently indicate that the emergence of fire-weather risk is already
occurring or imminent in these regions. This reinforces the robustness of
our conclusions: despite differences in model characteristics, the emer-
gence signal is strong and persistent across modelling frameworks.

3.4. Global Temperature of Emergence (GToE)

Fig. 6 displays the probability of exceeding five Global Warming
Levels (GWLs) - 1.0 °C, 1.5 °C, 2.0 °C, 3.0 °C, and 4.0 °C - for the FWI
across the three climate model ensembles. Each panel shows the likeli-
hood of crossing a specific GWL threshold, with higher probabilities
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Fig. 6. Probability of exceeding the GWL 1.0, 1.5, 2.0, 3.0 and 4.0 for the FWI. The signal is masked-out by the unburned areas given by the GFED4 dataset (Giglio

et al., 2013).

(darker shades) indicating a stronger likelihood of fire weather inten-
sification at a specific warming level. All the 3 ensembles have extensive
areas where signals are emerging already at 1.5 °C, with a percentage of
burnable land grid-points of 26.79%, 47.29% and 41.51% for CORDEX,
CMIP5 and CMIP6 ensembles respectively. The percentages are then
increasing up to 79.75%, 74.39% and 81.75% for the highest GWL
(Table 5).

While informative, these global-average values mask significant
spatial variations. We expanded the GToE analysis to the AR6 regions in
order to investigate this regional dimensions. The resulting breakdown
(see Figure FS2, showing trends in the percentage of emerged grid
points for each AR6 region across increasing global warming levels)
reveals consistent greographical patterns among the ensembles, while
also identifying specific regions where ensemble disagreements are
more pronounced. In regions characterized by the strongest fire danger
increase (e.g., Southern Africa, Europe, North America, Northern
Australia), the steepest changes are consistently found in the CORDEX-
CORE results. This confirms that the sharper regional signals are pri-
marily due to the downscaling approach rather than differences between
CMIP5 and CMIP6 driving GCMs. The two global model ensembles show
largely comparable behaviour in most regions. Overall we can say that

there is a strong consensus among all model ensembles that fire weather
risk is emerging as a hazard in many regions of the world starting from
GWL 1.5 °C, due to climate change. It is interesting to note which are the
regions where the signal does not emerge: India, the La Plata Basin, and
the Horn of Africa, which is in line with the projected increases in pre-
cipitation in those regions. The area with the greatest discrepancy be-
tween the ensembles is Australia, where for CMIP6 the signal hardly
emerges anywhere for any Global Warming Level (GWL).

3.5. Seasonal length

The lengthening of fire seasons is a notable phenomenon observed
over the past decades in different regions of the world (Silva et al., 2023;
Jain et al., 2017). Warmer temperatures contribute to earlier snowmelt
and to the drying of vegetation, extending the period during which
conditions are favorable for wildfires (Wotton and Flannigan, 1993;
Wasserman and Mueller, 2023; Riley and Loehman, 2016). This pro-
longed fire season amplifies the overall fire risk and challenges tradi-
tional strategies for fire management. We define the fire weather season
length as days per year exceeding the midrange point (average of
maximum and minimum value of FWI), for each year in each grid cell
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following Jolly et al. (2015).Fig. 7 shows regional significant trends
(according to the Mann_Kendall test) of the season length of the FWI.
Each region has a small subplot that highlights the trend over time, with
the vertical axis representing the fire season length in days per year and
the horizontal axis representing the years (1980-2099). The three lines
in each regional subplot correspond to the three climate ensemble
datasets. Across all regions, the fire season length shows a general in-
crease over time, although the rate of increase varies by region and
dataset. CORDEX generally projects a stronger trend and a larger in-
crease in fire season length compared to CMIP5 and CMIP6 in most
African regions, in South America, in Central and Eastern Asia and in the
Mediterranean region. CMIP5 shows higher trends and larger increases
in Central and North America and South-East Asia and Australia, while
CMIP6 tends to have the most moderate trends and increases in mostly
all the regions.

4. Discussion and conclusion

Anthropogenic climate change is already changing fire weather
conditions globally, and this trend will accelerate over the next few
decades, according to our multi-dataset and multi-threshold assessment.
By integrating multiple global and regional climate model ensembles (CMIP5,
CMIP6, and CORDEX-CORE) and applying a consistent Time of Emergence
methodology based on signal-to-noise ratios, we provide the first global
assessment of when fire-weather hazard becomes detectable across the AR6
reference regions. The Fire Weather Index (FWI), a widely used
operational indicator of atmospheric fire danger, responds
strongly to changes in temperature, humidity, wind and fuel dry-
ing. The mechanisms driving the increase in FWI are found to be com-
mon to all the three ensembles and differ from the equator compared to
the higher latitudes. In tropical regions, the main driver of the FWI in-
crease is the reduction in relative humidity, whereas in extratropical
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regions, rising temperatures are the dominant contributing factor.

Although differing in intensity, timing, and likelihood of emergence,
this study highlights a strong consensus across all available datasets
indicating a widespread increase in fire weather hazard across all re-
gions. In 39% of the ARG regions, the signal has already emerged, and it
is projected to emerge in all regions by 2040 at the latest. Furthermore
26.79% of the burnable areas already exhibit an emergence of the signal
at 1.5 °C global warming, increasing to 46.59%, 72.15%, and 79.75% at
2°C, 3°C, and 4 °C of global warming, respectively (see Table 5).

Our analysis shows clear geographical differences in the Time of
Emergence (ToE) of fire weather signals. Local emergence is already
noticeable in areas like the Mediterranean, southern Africa, Amazonia,
and large parts of North America's high latitudes at the beginning of the
21st century. These regions overlap with previously identified climate
hotspots for increasing drought risk due to human-caused climate
change (Greve and Sonia, 2015; Gudmundsson and Sonia, 2016),
demonstrating the strength of the signal across various hydroclimatic
indicators.

As found in earlier studies, ToE tends to happen later at the local
level than at broader regional levels (Maraun et al., 2013). This pattern
reflects how internal variability decreases when averages are taken over
larger areas. It shows why it's crucial to analyze both scales, since
local-scale emergence is most relevant for impacts on ecosystems, fire
management, and communities.

Spatial differences in ToE are closely linked to changes in precipi-
tation. Regions with decreasing precipitation, such as the Mediterra-
nean, Amazonia, southern Africa, Southeast Asia, and Australia, are
among the first to reveal fire weather signals. In contrast, areas with
increasing precipitation, like parts of Eurasia, North America, Argentina,
and Northern Europe, tend to show later emergence. Under the high-
emission RCP8.5 scenario, our results indicate a significant rise in
wildfire risk in regions with strong seasonal rainfall patterns, including
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Fig. 7. Seasonal length for the AR6 regions, trends significant using Mann_Kendall test.
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the Mediterranean basin and monsoonal areas in the Americas, Asia,
Africa, and Oceania.

Moreover, not only does the intensity of fire weather increase, but
the fire season also becomes longer. This means that in some areas,
wildfires may no longer occur only in a specific season but could become
a nearly year-round risk.

FWI is based on raw climate model variables (temperature, relative
humidity, wind, precipitation), which typically exhibit systematic bia-
ses, especially in the humidity and wind fields. Since FWI responds
nonlinearly to these inputs, such biases can propagate into the estimate
and inflate or damp absolute fire-weather values (e.g., Bedia and Bhend,
2015; Vitolo et al., 2019). A comprehensive bias correction across the
full multi-model ensemble is, however, not feasible in this context,
especially for wind speed and relative humidity, for which high-quality,
long-term observational datasets with adequate spatial coverage are
limited. In addition, wind and humidity biases can only be corrected by
using advanced multivariate approaches in order to preserve physical
covariances, which is beyond the scope of this study. Nonetheless, our
analysis primarily focuses on relative changes and emergence timing of
the climate signal, metrics that are less sensitive to systematic input
biases than absolute index values.

Our analysis relies on a static mask of unburnable land cover derived
from conditions at present. Vegetation distribution and fuel continuity
will, however, change with climate. For instance, Arctic and sub-Arctic
landscapes that today are dominated by tundra and sparse vegetation
will continue to experience shrub expansion and biomass accumulation,
thereby reducing fuel limitations over time (e.g., Mack et al., 2011;
Mack et al., 2021). Conversely, ecotonal transitions along the
dryland-grassland interface can foster enhanced fire activity where fuel
loads increase following episodic wet periods ( Abatzoglou et al., 2021).

Accordingly, our estimates of geographic exposure to extreme fire
weather, in particular within high-latitude regions and dynamic eco-
tones, should be considered conservative lower-bound projections that
do not yet account for future vegetation changes.

Although the FWI is a widely used, reliable indicator of fire-weather
conditions, it represents only potential fire danger and does not directly
quantify burned area or fire occurrence. Actual wildfire impacts also
depend on ignition sources such as lightning and human activities, fuel
continuity and loads, vegetation management, and fire suppression.
Because of this, sensitivity of fire activity to shifts in fire-weather con-
ditions can vary substantially across regions. Several studies have shown
strong empirical relationships between FWI and burned area or fire
occurrence, especially in areas with abundant ignition sources and
continuous fuel conditions that are receptive to burning (Abatzoglou
etal., 2018; Turco et al., 2018). By contrast, areas with limited ignitions,
or where management reduces fuel continuity on relatively fast time-
frames, may reveal weaker or lagged responses to increased fire danger
conditions (e.g., parts of Northern Europe and East Asia). Our findings
therefore indicate that the projected increases in FWI, particularly
across fire-prone regions such as the Mediterranean, southern Africa,
Southern America and Southern Australia, are likely to be translated
into increased fire risk and impacts; elsewhere, more moderate effects
are likely to ensue, unless changes in ignition or fuel conditions occur in
parallel. Recognition of these interactions is paramount for the inter-
pretation of our projections and underlines the need for integrated
adaptation measures that tackle not only climate-driven fire danger but
also human exposure, fuel dynamics, and risk governance.

Our findings have several implications. For example, more human
settlements, especially in tropical Africa, the Amazon basin, the eastern
United States, and western North America, are likely to face unprece-
dented wildfire risks at the wildland-urban interface. This raises threats
to lives, infrastructure, and economies. By knowing when and where fire
weather conditions are likely to develop, gives policymakers and fire
management agencies a critical opportunity to prepare. Anticipating the
ToE allows for timely implementation of targeted strategies, such as
strengthening prevention programs, updating land-use and building
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codes, and increasing investments in firefighting resources. Region-
specific ToE estimates also help create better early warning systems
and adapt fire danger rating systems, ensuring that preparedness keeps
pace with changing fire patterns.

Our results show clear timelines that should inform adaptation
planning. In regions where emergence of strong fire-weather is projected
already by the 2030s, notably Southern Europe and southern Africa,
investments in preparedness, such as upgrading fire-suppression ca-
pacity, hardening critical infrastructure, and developing community
evacuation plans, must be prioritized over the next decade. By contrast,
high-latitude parts of North America and portions of central Asia have a
key opportunity to implement long-term strategies such as landscape
fuel management, resilient land-use planning, and ecosystem restora-
tion, in advance of emergence later in the century. Adaptation measures
uniquely tailored to these different temporal trajectories will better
mitigate future fire impacts under accelerating climate change.
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