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1 Summary for Publication 
This document provides a description of the blending methods developed in Task 5.2 
to produce seamless predictive climate information, following the guidelines provided 
in Task 5.1. The blending methods presented in this document will be then compared 
in terms of consistency and usefulness for several case studies in Task 5.3.  

2 Contribution to the top-level objectives of 
Impetus4Change  

This deliverable contributes to the following I4C specific objectives: 

SO5: Develop seamless homogeneous predictive information from very short 
(subseasonal) to climate change (several decades) timescales, both at the global 
and regional scale and additionally i) advance novel approaches to blend and align 
forecast information across timescales in a way that improves the forecast skill and 
therefore underpins strategic decision-making and ii) provide this information to I4C 
demonstrator projects and stakeholder with clear guidance and best practices. 

How: By presenting and demonstrating the usefulness of the blending methods 
developed within WP5. 

 

3 Detailed Report 
3.1 Introduction 
The recent development of blending methods shows potential benefits for improving 
our information about the future weather and climate, in timescales that range from 
a few weeks to several years to decades ahead. Although the data used differ 
depending on the forecast timescale, the common idea behind these “blending” 
methods is to combine the multiple forecast sources available to homogenize the 
information available to users. By leveraging the strengths of each data source, these 
methods aim to reduce uncertainties and enhance the reliability of forecasts across 
all lead times, from days to decades.  

Blending methods are gaining increasing interest at decadal timescales, as the 
implementation of adaptation policies requires relevant information about climate 
evolution over the near-term future (Kushnir et al., 2018). Three sources of information 
are available to provide relevant climate information over the near-term future. Non-
initialized ensemble of climate simulations that provide seamless climate evolution 
from the historical period to the end of the 21st century but encompassing the full 
range of uncertainty relative to internal climate variability. Initialized decadal 
predictions that aim to reduce this uncertainty by initializing the climate model 



 

Impetus4Change / Deliverable 5.2 / Synthesis report documenting the new I4C blending strategies 

simulations from an estimate of the observed atmospheric and oceanic state, which 
intends to phase the simulated and observed climate variability modes and to correct 
errors in the model’s response to forcing. However, their added-value to non-initialized 
climate projections can be small after a few years (e.g. Yeager et al., 2018) and they 
are usually limited to 5 to 10 years. They are also subject to initial shocks and drift due 
to the initialisation (e.g. Sanchez-Gomez et al., 2016). Finally, observations can also be 
used to constrain the climate evolution over the next decades. Taking advantage of 
these different sources of information to deliver seamless climate projections —
meaning continuous and without artificial shifts in distribution— for the near-term 
future, with narrow uncertainty related to internal climate variability, remains a 
challenge. 

To address this challenge, several methods have been recently developed to blend 
information from non-initialized ensembles of climate simulations with the observed 
climate state or decadal predictions in order to constrain certain aspects of internal 
climate variability in large ensembles of non-initialized transient climate projections.  
Befort et al. (2020) and Mahmood et al. (2021) explore this idea by developing 
methods based on the subselection of non-initialized climate projections from large 
ensembles based on their agreement with sea surface temperature patterns from 
initialized decadal predictions. Another method was proposed by Befort et al. (2022) 
to blend information from decadal prediction and transient historical simulations by 
concatenating them. This can, however, lead to some inconsistencies affecting the 
resulting dataset before and after their transition point.  

This deliverable describes the blending strategies that have been developed for time-
to-event forecasts and decadal timescales in Task 5.2. These results are provided in 
the following sections, as individual contributions from the different institutions involved 
in WP5. 

3.2 Work Carried Out 
New blending method for time-to-event forecasts (NRS)  
At NRS, we have studied methods for blending probabilistic time-to-event forecasts, 
i.e. forecasts that estimate the timing of a specific event. In meteorology, this can, 
e.g., be a forecast of when we can expect the first frost of the winter season, the onset 
of the rainy season, a sudden stratospheric warming or a drought period. 

Our research (Cunen et al., 2025) explores how to blend time-to-event forecasts from 
different numerical weather prediction (NWP) systems using a statistical survival model 
framework. In the field of medicine and finance, survival methods are widely used for 
modelling onset of events (see e.g. Kalbfleisch and Prentice, 2002). Our study is one 
of the first exploring the use of survival methods within the field of meteorology. Survival 
models are particularly suitable for dealing with censored observations, which in the 
meteorological context occurs when the target event does not happen for an 
ensemble member before the maximum lead time of the forecast. 

We use the timing of the first hard freeze of the winter season for locations in Norway 
as an example application, and define hard freeze as a day with mean daily 
temperature below 0 °C. We consider blending of seasonal temperature forecasts 
from ECMWF, DWD, CMCC, Météo France and UK MET office with lead times around 
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6 months1, with ECMWF subseasonal forecasts of temperature with lead time 47 days2. 
The seasonal forecasts are treated as one multi-model ensemble of around 150 
members, while the subseasonal forecasts have 11 members. 

From each ensemble member, we extract the first occurrence of hard freeze of the 
season (or the time of censoring) and use survival methods to form one probabilistic 
distribution for each of the two forecast sources (seasonal and subseasonal) (Figure 
1). We then explore different blending methodologies for combining the resulting 
distributions, both established methods such as Linear Pooling and Beta Pooling 
(Gneiting and Ranjan, 2013; Baran and Lerch, 2018), and methods of our own making, 
Gaussian Pooling and Hazard Blending (Cunen et al., 2025). Model parameters were 
estimated from observation-hindcast pairs. 

 
Figure 1. Temperature trajectories from seasonal forecasts (blue) and subseasonal 
forecasts (red) with two different issue dates (day 1 and day 29) for a selected study 
location. The observations (black) are derived from Lussana, (2020). The first crossing 
of 0 °C is extracted for each ensemble member (circles), or the time of censoring if 
the ensemble member never crosses 0 °C  (triangles). The timing data are used to form 
two probabilistic time-to-hard-freeze distributions that are combined by using different 
blending strategies. 

To evaluate the effectiveness of the blending methods, we conducted a 
comprehensive simulation study. This was done by creating simulated temperature 
trajectories mimicking properties of the seasonal and subseasonal temperature 
forecasts. The simulation study allowed us to test the blending methods under 
controlled conditions, with varying levels of forecast bias, dispersion and number of 
hindcast-observation pairs. In addition, we tested the methods for a real-world case 
study, with temperature data from Norway and Fennoscandia. 

The simulation study demonstrated that combination forecasts generally improve 
upon single-source forecasts when the sources are balanced in terms of noise-to-
signal ratio and there is enough hindcast data. However, when the number of 
hindcast-observation pairs is low or the forecasts are highly unbalanced, all blending 

 
1 C3S Seasonal Forecasts: dataset documentation - Copernicus Knowledge Base - ECMWF Confluence Wiki  
2 https://confluence.ecmwf.int/display/S2S/ECMWF+model+descript 
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methods struggle, with more complex approaches performing worse than simpler 
alternatives. 

For the real case study from Fennoscandia, most of the blending approaches showed 
skill compared to single-source forecasts and climatology for the time-to-hard-freeze 
forecasts. Simpler methods, such as Linear Pooling, outperformed more advanced 
techniques, likely due to the limited number of hindcast-observation pairs. In Figure 2, 
the skill scores of the Linear Pooling method is shown for the case study. Particularly at 
locations far from the coast, and in Northern Norway, the blending method has skill 
compared to the single-source forecasts. These are locations where hard freeze 
typically occurs closer to our selected issue date, October 1. 

 

Figure 2. The skill of the linear pooling (LP) blending method relative to the seasonal 
forecast (a) and subseasonal forecast (b) for time-to-hard-freeze predictions in 
Fennoscandia, with issue date October 1. Here, 1 is a perfect score, while scores 
below 0 means that the single-source reference forecast performs better. Figure (c) 
shows the weight that is given to each of the two forecast sources during blending, 
with blue indicating high weight on the seasonal forecast and red indicating high 
weight on the subseasonal forecast. 

While the time-to-hard-freeze application was used to motivate our research, the 
blending methods and simulation framework can be used to study other time-to-
event forecasts in meteorology. The methods and results from our work are reported 
in a paper that is currently in review in a scientific journal. A preprint is available on 
arxiv (Cunen et al., 2025). 

New blending method to predict winter temperature over Europe 
and Northern Asia on multi-annual to decadal timescales (DMI) 

Predicting the winter climate over Europe and northern Asia remains challenging 
especially on multi-annual to decadal timescales. The initialized climate predictions 
have shown limited success in predicting the winter climate variability over Eurasia as 
the skill of these predictions vanes quickly after the first forecast year. Eurasia is also 
the region where internal climate variability is strongly modulated by the North Atlantic 
Oscillations (NAO) (e.g. Trigo et al., 2002; Ye et al., 2022). We explore here whether this 
observed teleconnection between NAO and the surface air temperature (SAT) can 
be used for constraining climate model simulations in order to provide skillful estimates 
of winter climate in this region for the next ten years.  
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For this, at DMI we have developed a new methodology for constraining variability in 
historical simulation ensembles by exploiting the observed teleconnection between 
NAO and surface air temperature. This new methodology is complementary to the 
other methodologies in which sea surface temperature anomalies were used as a 
constraint (e.g. Mahmood et al., 2022; Donat et al., 2024). The new methodology 
presented here involves computing regression between winter season NAO and 
surface air temperature during a 20 year window (Figure 3). The observed and model 
member simulated spatial distribution of the regression patterns are compared in 
order to rank the model members. The highest ranking members are then used to 
make predictions after the constraining period. This procedure is repeated yearly, for 
example, to predict temperatures from 1971 and onwards the constraining period 
used is 1951 to 1970 and similarly to predict temperature from 1972 and onwards the 
constraining period is 1952 to 1971 and so on. Based on this procedure, we build a 
hindcast of 40 initializations for evaluating the skill of the predictions.  

The constrained ensemble based on this methodology can make skillful predictions of 
seasonal to multi-annual mean winter climate over Europe and northern Asia. The 
constraint evaluates simulated and observed NAO-temperature teleconnection 
patterns during 20 year windows prior to making predictions. The resulting top ranking 
10 members are used to make predictions for the next 10 years. We find here that the 
constrained ensemble is skillful in predicting winter SAT on multi-annual to decadal 
timescales over Euroasia (Figure 4). We also find that the constrained multi-annual 
predictions yield higher correlation skill compared to both the unconstrained 
ensemble and the initialized predictions, especially up to 5 year mean winter SAT 
predictions. Therefore, we argue that for the Eurasian region, the constraint could 
provide skillful winter SAT predictions on multi-annual timescales with minimal cost 
compared to the state of the art initialized decadal climate predictions for which 
added value from initialization wanes quickly after the first forecast year. 
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Figure 3. A comparison of the regression pattern between winter time (Dec-Jan-Feb) 
NAO and the surface air temperature during the 20 year period. The top rows show 
the observed relationship between NAO and temperature (using ERA5; Hersbach et 
al., 2020) while the subsequent rows show the relationship in individual model 
members (a total 250 members were used). For each start-date a spatial pattern 
correlation is calculated between the observed and simulated NAO-temperature 
regressions to sort the members from highest to lowest ranking members (shown here 
as top and bottom ranking three members). The top-ranking members can be 
selected to make predictions after the constraining period. Here we only show 
comparisons for two start dates, however, a total of 40 start-dates (i.e. 1971 - 2010) 
were used in building a full hindcast for evaluation. 
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Figure 4. ACC difference for winter surface air temperature between DCPP-A and 
historical ensemble (left panels), Best10 and historical ensemble (center panels) and 
Best10 and DCPP-A (right panels) for different forecast periods. Stippling indicates 
regions where the correlation difference is statistically significant at the 95% 
confidence level. 

 

New blending method to provide seamless climate information 
over the near-term future: a case study with winter Mediterranean 
temperature (CNRS-Cerfacs) 

CNRS-Cerfacs has developed a novel blending methodology to explore the potential 
benefits of combining the three available sources of information —observations, 
initialized decadal predictions, and non-initialized climate projections— to provide 
relevant information on near-term climate change with reduced uncertainty related 
to internal climate variability. In this report, we present a case study for winter surface 
temperature over the Mediterranean region.  

We used an ensemble of 92 members from 6 prediction systems (DCPP-A; Boer et al 
2016) and 163 members from the equivalent models for transient historical simulations 
(Eyring et al., 2016), summarized in Table 1. The blending method developed in this 
study is based on two steps (described below).  
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Table 1. Summary of the models used from the 6 predictions system and the 
corresponding model for the transient historical simulations. Only the data from the 
CNRM-Cerfacs modelling center do not come from the same version of the model for 
the prediction system and the historical simulations.   

The first step is to select from the historical simulations those that are the closest to 
observed climate indices before the start of the forecast. Four climate indices are 
tested for this first selection (step 1):  

- The Atlantic Multidecadal Variability (AMV) index, which described the 
evolution of the leading mode of multidecadal variability in the North Atlantic 
Ocean (Kerr, 2000). The AMV has been linked to many observed low-frequency 
regional climate variations, including European precipitation and temperature 
(Sutton & Dong, 2012). The AMV index is defined as the average SST over the 
North Atlantic (0–60° N, 80°W–0° E) after the removal of the externally forced 
signal (Trenberth and Shea, 2006). A low-pass filter is then used to retain only 
the low-frequency variations.  

- The North Atlantic subpolar gyre (SPG) index, which is a key part of the decadal 
variability of North Atlantic SST and has been linked to the European climate 
(e.g. Hermanson et al., 2014). In this study, we define the NASPG index as the 
average SST over the 15°W–40°W, 50°N–60°N region. 

- The winter (December to February) North Atlantic Oscillation (NAO), which is 
the dominant mode of atmospheric circulation variability in the North Atlantic 
sector. Winter NAO exerts a strong influence on European weather and climate 
(e.g. Hurrell et al., 2003). The index is defined as the difference in area-
averaged mean sea level pressure (MSLP) between a southern box (20–55° N, 
90°W–60° E) and a northern box (55–90° N, 90°W–60° E) in the North Atlantic 
(Stephenson et al., 2006; Baker et al., 2018). 

- The 9-year average global sea surface temperature (GSST) pattern. This index 
has been proposed in previous studies to constrain low-frequency internal 
climate variability in surface temperature by selecting the simulations closest to 

Model 
Number of simulations 

(historical / prediction system) 

 CNRM-CM6-1(historical) 

 CNRM-ESM2-1(prediction system) 
30 / 25  

 EC-Earth3 15 / 15 

 MIROC6 50 / 10 

 MRI-ESM2-0 12 / 12 

 NorCPM1 30 / 20 

 IPSL-CM6A-LR 26 / 10 
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the observed spatial distribution of sea surface temperature based on spatial 
correlation (e.g. Befort et al. 2020; Mahmood et al. 2022).  

The indices based on SST are evaluated against the NOAA Extended Reconstructed 
SST V5 (ERSSTv5; Huang et al., 2017) observed dataset of sea surface temperature. The 
winter NAO index is evaluated against the ERA5 reanalysis (Hersbach et al. 2020). 

The selection method consists of two steps. First, we select a subset of historical 
simulations that are closest to an observed climate index relevant to the variable and 
region of interest over the Y years preceding the forecast. In the example shown in 
Figure 5, we use the Atlantic Multidecadal Variability (AMV) as the relevant climate 
index and set Y=20 years. We select a first subset of size N₁=30, which is used in step 2, 
and a second subset of size N₂=20, which serves as a forecast based solely on the 
selection of historical simulations from observations (referred to as SubsetOBS(N₂) in 
Figure CNRS_1). The forecast SubsetOBS(N₂) shows a reduced spread in the distribution 
of winter surface temperature over the Mediterranean region compared to the full 
historical ensemble, and its spread is relatively close to that of the decadal predictions 
(Figure 1, step 1). Then, the second step consists of refining the selection of N1 historical 
simulations based on observations by selecting a sub-ensemble of N2 simulations 
(Figure CNRS_1; step 2). This is done by selecting the N2 simulations from the 
SubsetOBS(N1) that are the closest to the winter surface temperature of the ensemble 
mean of the hindcasts over the region of interest, here the Mediterranean region. The 
resulting forecast, SubsetOBS+Hindcast(N2), derived from these two steps, further reduces 
uncertainty compared to SubsetOBS(N2) alone, as illustrated in Figure 5. 

The historical simulations and the hindcast simulations are compared against 
subsetAMV,  subsetSPG, subsetNAO, subsetGSST derived from the first step of the method 
and subsetAMV+hindcast,  subsetSPG+hindcast, subsetNAO+hindcast, subsetGSST+hindcast derived from 
the full method. We also developed subsetTAS, which derives from the first step of the 
method and is based on winter surface temperature over the region of interest (MED), 
to assess whether it is sufficient to only use the variable we are trying to predict to 
constrain historical simulations. Finally, we also derive subsethindcast that is based on the 
selection of historical simulations closest to the surface temperature of the hindcasts 
ensemble mean over the region of interest.  
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Figure 5. Diagram illustrating the concept and main steps of the blending method. In 
step 1,  the Atlantic Multidecadal Variability (AMV) index from the historical simulations 
(minimum and maximum in gray) is compared to the ERSSTv5 observational dataset 
(Huang et al., 2017; green line), with the selection of the best 30 members in green. 
The histogram of surface temperature predictions are evaluated against the ERA5 
reanalysis (Hersbach et al., 2020; red line).  

There is an overall important reduction in the spread of average winter surface 
temperature predictions over the Mediterranean region during the testing period 
(1967–2000) for all subsets derived from our new blending method, compared to the 
historical ensemble (Figure 6a). Subsethindcast shows the largest reduction in spread for 
5-year prediction, likely because the large number of historical simulations increases 
the chance of selecting simulations close to the hindcast mean, although this effect 
is smaller for 10- and 15-year predictions compared to the other subsets. 
SubsetAMV+hindcast and subsetSPG+hindcast also show the larger decrease of the spread for 
the three time horizons in comparison to the other subset derived from the blending 
method.  

Interestingly, the spread of the hindcast simulations is comparable or even larger than 
the one of the historical ensemble. This suggests that the initialization does not allow 
to reduce the uncertainty in winter surface temperature due to internal climate 
variability over this region. 
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Figure 6. Boxplots of the distribution of the (a) spread and (b) Mean Average Error 
(MAE) of 5-yr, 10-yr and 15-yr forecast of average winter surface temperature 
calculated over the Mediterranean region as defined in the IPCC (Iturbide et al., 
2020). The spread is defined as the difference between the minimum and the 
maximum and the MAE is calculated between the observed surface temperature 
from ERA5 (Hersbach et al. 2020) and the ensemble mean of the different dataset 
tested. The boxplots are defined with the minimum, 25th percentile, median, 75th 
percentile and maximum. The spread and the MAE are calculated for each year of 
the testing period (1967-2000). (c) Mean squared skill score (MSSS), Ranked Probability 
Skill Score (RPSS) and Continuous Ranked Probability Skill Score (CRPSS) calculated 
over the 1967-2000 period, using the ensemble mean for the MSSS and the whole 
ensembles for the RPSS and CRPSS. For these three scores, a positive means a better 
prediction than the historical ensemble and a negative value a worse prediction.  

In addition to this reduction of the spread within the subset ensembles, there is also an 
overall decrease in the median of the mean absolute error (MAE) of the subsets 
ensemble mean in comparison to the historical ensemble mean calculated over the 
testing period (Figure 6b). This reduction in the MAE is particularly important at 10-year 
and 15 year predictions. SubsetAMV+hindcast and subsetSPG+hindcast that show an important 
decrease in the spread over the testing period also show among the largest MAE 
decreases between the subsets, highlighting the potential of the method and the 
predictor used. Although a lower MAE does not imply that observations always fall 
within the ensemble spread, the overall MAE reduction—particularly for 10- and 15-
year forecasts—indicates that the blending method improves the ensemble mean 
prediction compared to the historical ensemble mean, likely by partially capturing 
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internal decadal variability beyond external forcing alone. Interestingly, the hindcast 
ensemble shows an overall decrease in the MAE in comparison to the historical 
ensemble, which indicates that the initialization allows part of the internal variability to 
be captured. This also supports the second step of the methodology developed here, 
i.e. to refine the first selection, based on observations, using the hindcasts ensemble 
mean. 

We also evaluate the prediction of 5, 10 and 15 years average winter temperature 
over the 1967-2000 period in comparison to the historical ensemble of simulations for 
three scores: Mean squared skill score (MSSS), Ranked Probability Skill Score (RPSS) and 
Continuous Ranked Probability Skill Score (CRPSS) (Figure 6c). The MSSS is a 
deterministic score that informs if the ensemble mean is close to observations, while 
the RPSS and CRPSS are probabilistic, including how well the forecast captures 
uncertainty. The results are contrasted, depending on the score. The hindcast 
ensemble shows a better MSSS than the historical ensemble, but with lower RPSS and 
small or lower CPRSS, for 5 and 10 years prediction, which seems consistent with the 
decrease in the MAE (Fig 6b) but the overall larger spread than the historical 
simulation (Fig 6a). The subsetAMV+hindcast shows a better prediction than the historical 
ensemble based on the MSSS for 5, 10 and 15 years prediction, as well as based on 
the RPSS and CRPSS for 10 and 15-years prediction. Subsethindcast shows a strong 
improvement of the 10 year prediction in comparison of the historical ensemble. 
Interestingly, the subsetNAO+hindcast shows a deterioration in the forecast in comparison 
to the historical ensemble whereas the subsetNAO shows an overall improvement of the 
forecast.  

Finally, we evaluate the residual ACC for the hindcast, the subsetAMV and the 
subsethindcast  and subsetAMV+hindcast as they appear to be the best subset based on the 
previous evaluation (Figure 7). The residual ACC is calculated following Smith et al. 
(2019) and measures how well the subset ensembles capture the observed internal 
variability that is not captured by the ensemble mean of the historical ensemble. The 
hindcast shows no significant added value for the 10-year forecast, except in parts of 
northern Europe and the southwest of Spain. By selecting the historical simulations 
closest to the hindcast ensemble mean of the average winter temperature over the 
Mediterranean region, a part of the western Maghreb region shows positive significant 
residual correlation in subsethindcast. SubsetAMV shows significant positive residual 
correlations over Spain and a large part of France, highlighting the added value of 
constraining historical simulations using this climate mode of variability to predict 
winter temperatures in these regions. By adding a second selection based on the 
hindcast, subsetAMV+hindcast shows higher correlation over Spain as well as a part of the 
North Maghreb region.  
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Figure 7. Residual Anomaly Correlation Coefficient (ACC; Smith et al. 2019) calculated 
from the ensemble mean of 10-year prediction of winter temperature for the (a) 
hindcast ensemble, (b) Subsethindcast, (c) subsetAMV and (d) subsetAMV+hindcast over the 
1967-2000 period. The hatched regions indicate statistically non-significant values (p < 
0.05) using a permutation test. 

 

The new methodology proposed here appears to be a promising approach for 
providing seamless and relevant climate information over a region of interest for the 
near-term future, with reduced uncertainty associated with internal climate variability, 
while avoiding the drift caused by the shock of the initialization in decadal prediction. 
One strength of this method is that it can be easily applied to other regions or variables 
of interest. For this case study, it appears that the subsetAMV+hindcast, subsetSPG+hindcast and 
subsethindcast are the most effective for predicting winter surface temperature over the 
Mediterranean region for 5, 10 and 15 year predictions. The added value for Spain 
highlighted in Figure 7c and 7d is of particular interest for the I4C project, as Barcelona 
is one of the demonstrator cities.  

New blending methodology to provide seamless climate 
information for the next 30 years (BSC) 

The BSC has developed a novel blending methodology that combines information 
from decadal predictions and climate projections to provide seamless climate 



 

Impetus4Change / Deliverable 5.2 / Synthesis report documenting the new I4C blending strategies 

information for the next 30 years. This methodology is motivated by the fact that, 
during the initial decades of climate projections - particularly at regional scales - the 
dominant source of uncertainty is the internal variability of the climate system (e.g., 
Hawkins and Sutton, 2009). Since decadal predictions are initialised from the observed 
state, by aligning the model’s climate variability with real-world observations, they 
tend to be more skillful than climate projections. However, climate predictions 
typically extend only 10 years into the future. To provide the best possible information 
for the coming decades, it is therefore essential to efficiently combine decadal 
predictions with climate projections. As noted by Befort et al. (2022), simply 
concatenating decadal climate predictions and climate projections is not 
straightforward and may lead to inconsistencies during the transition period. 
Furthermore, as demonstrated in Deliverable 5.1, differences exist in both the statistical 
properties and physical processes of sea surface temperature (SST) variability at the 
transition between decadal predictions and climate projections that need to be 
tackled for an effective blending. 

BSC’s blending approach builds on the analog-based constraining method 
developed by Mahmood et al. (2021), which has been shown to effectively improve 
the predictive capacity of climate projections by reducing the uncertainties related 
to internal climate variability. However, an important difference is that while in 
Mahmood et al. (2021) only the ensemble mean is considered, our new methodology 
blends the whole ensemble in the projections and predictions, which makes it suitable 
for probabilistic predictions, including of climate extremes. To implement this and 
address the inconsistencies between predictions and projections additional 
considerations are required. While the method in Mahmood et al. (2021) ensures 
physical consistency by ranking climate projection members based on their similarity 
to the multi-model ensemble mean of decadal predictions and selecting the highest-
ranked members, our approach applies this ranking individually to each member of 
the decadal prediction ensemble. Thus, by selecting the projection in closest 
agreement with each of the individual forecasts, we generate an ensemble of 
climate projections that matches the size of the decadal prediction ensemble. This 
allows us to also preserve the statistical properties of both ensembles. 

Several choices must be made when determining which climate projection members 
best align with the variability in decadal predictions. The sensitivity to some of these 
choices has been investigated: 

● Selection method: We have used spatial pattern correlations (centered and 
uncentered) and Euclidean distance. 

● Region where SST anomaly patterns are derived: We seek for analogs based on 
global SST anomaly fields, which has been previously shown to provide the best 
results at the global scale,  and North Atlantic SST anomaly fields (0°–60°N and 
80°W-0), which has the potential to improve the prediction skill over Europe,  the 
key region of interest for I4C. 

● Forecast range and temporal aggregation for computing the anomalies: 
Because the objective is to blend or stitch predictions and projections, we focus 
on forecast year ten, the last year available in the predictions. The anomalies 
have been computed over two different aggregation periods: the average of 
the first nine years and the average of years five to nine. 
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● Repetition in model ensemble selection: We have tested two selection criteria, 
allowing repetition of members in the selected ensemble of projections, and 
not allowing repetitions. 

 

Model DCPP members Historical Members 

CanESM5 10  25 p1 + 25 p2 

CMCC-CM2-SR5  10 10 

EC-Earth3 i4  10 22 

IPSL-CM6A-LR  10 33 

MIROC6  10 22 

MPI-ESM1-2-HR  10 10 

NorCPM1 p1 10 30 

NorCPM1 p2 10 - 

Total 80 174 

Table 1. Climate models and ensemble members considered in this deliverable. 

To assess the sensitivity of these choices and the effectiveness of this blending 
methodology, we apply it to historical simulations with decadal hindcasts for start 
dates covering the period 1960–2014, during which predictive skill can be evaluated 
against observations. We use an ensemble of 80 members from eight decadal 
prediction systems and 177 members from the equivalent models for historical 
simulations (Table 1). This decision of only considering simulations from the same 
models in both ensembles seeks to maximise the physical consistency between the 
ensembles. Anomalies are computed relative to the 1980–2010 period. For decadal 
predictions, the lead-time-dependent climatology is removed to correct for drift when 
computing the anomalies. 

A first consideration of this method is that for each decadal ensemble member we 
determine the most similar historical member allowing for any model member to be 
chosen (not just from the same model). This means that for each of the 80 decadal 
prediction members, the 177 historical members are ranked by similarity for each start 
date. Then by selecting the highest ranked members an ensemble of 80 historical 
members is formed per start date. Figures 8 a and b show the distribution of the highest 
ranked members for the centered pattern correlation and Euclidean distance 
methods based on the Global Ocean pattern for each start date. While for the 
centered pattern correlation the distribution is consistent for each forecast time, for 
the Euclidean distance that the distribution varies with start date, and generally worse 
members tend to be selected in the first half of the start dates. This happens as a result 
of the climatological reference period chosen, as anomalies center around zero as 
they approach the central years of the reference period. An alternative metric to the 
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Euclidean distance that could circumvent this issue would be the use of centered root 
mean square difference, which we will test in future analyses. The uncentered pattern 
correlation shows a similar behaviour than the Euclidean distance, as discussed in 
Donat et al. (2024), which recommend the centered approach. We find that in 
general the highest ranked historical members for each decadal prediction member 
are from the same model approximately 50% of the time for either method, thus 
ensuring a high level of physical consistency (figure 8 c and d). It is also important to 
check if for some start dates the same historical member is selected as the highest 
ranked member for multiple decadal prediction members (figure 8 c and d). This could 
pose a problem if the same members are selected recurrently, which could strongly 
reduce the ensemble spread. Encouragingly, we find that approximately 50-60% of 
the highest ranked historical ensembles are formed by different members. Similar 
results are found using these methods based on the North Atlantic Ocean pattern (not 
shown). 

 

Figure 8. Member selection metrics for using the centered pattern correlation and 
Euclidean distance methods based on the Global Ocean pattern. a) and b) show the 
distribution of highest ranked correlations and lowest Euclidean distance respectively, 
for each start date. c) and d) show the percentage of members selected that are 
different and the percentage of historical members that select the same model as the 
decadal predictions.  

Figure 9 shows the temporal mean of the intra-ensemble standard deviation 
computed for the SST anomaly fields in the decadal predictions forecast year 10, the 
full and the constrained historical ensemble, this later based on both the Global and 
North Atlantic regions and using both the centered pattern correlation and the 
Euclidean distance methods. The patterns of the intra-ensemble standard deviation 
are very similar for the decadal predictions forecast year 10 and the full historical 
ensemble, with the exception of the North Atlantic region that shows substantially 
larger values in the historical simulations than in the decadal predictions. This is most 
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likely because the North Atlantic is a region where the impact of initialisation persists 
on decadal times-scales (e.g. Meehl et al., 2014 and references therein). We find that 
constraining the historical ensemble based on the decadal predictions reduces the 
intra-ensemble spread in the North Atlantic, making it more similar to the one of the 
decadal predictions. Regarding the methodological choices, we find that 
constraining based on the Global or the North Atlantic SST patterns has a small impact 
while the metric used to determine the analogs largely changes the results, with the 
Euclidean distance yielding a much smaller intra-ensemble spread than the centered 
pattern correlation approach. We also tested the uncentered pattern correlation 
approach (not shown) which gave similar results, however, as shown by Donat et al. 
(2024), this approach may lead to unrealistic results as it is strongly sensitive to the long-
term trend, and therefore the centered approach is recommended instead.   

 

Figure 9. Temporal mean of the multi-model intra-ensemble standard deviation for the 
SST anomaly fields (ºC) in (a) the decadal predictions at forecast year 10, (b) historical 
simulations, and (c-f) four constrained historical ensembles with different choices. The 
period covered by the experiments is 1970-2014. 

Figure 10 shows the global mean sea surface temperature for the decadal predictions 
at forecast year 10 and for the full and the analog-based constrained historical 
ensemble using the same four methodological choices used in Figure 9. This reflects 
the agreement between the ensembles at the forecast time that the blending is 
implemented. The ensemble spreads (herein defined as the minimum and maximum 
values within the ensemble) show  small differences between the full historical and 
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prediction ensembles, which is expected because most of global-scale variability is of 
externally forced origin. Despite this, all analog-based methods achieve some spread 
reduction, bringing the ensemble spread closer to that of the decadal prediction 
ensemble. This indicates that the analog-based blending method improves the 
statistical consistency between the predictions and historical simulations at their 
transition point. While constraining based on the global SST patterns or the North 
Atlantic alone does not have a clear impact, using the Euclidean distance method 
reduces more the ensemble spread in comparison to the uncentered pattern 
correction method, leading to a small over reduction of the ensemble spread with 
respect to the decadal predictions.  

 

Figure 10. Global mean SST (ºC) at the transition between the decadal predictions and 
historical simulations for the full and constrained ensembles using four methods. Gray 
and pink shading are the minimum-maximum range of the decadal prediction and 
the historical constrained ensembles, respectively. Dashed blue lines are the minimum-
maximum range of the full historical ensemble.  

Figure 11 is similar to Figure 10 but for the North Atlantic mean SSTs, and nicely illustrates 
that in that region the analog-based method is much more effective in constraining 
the spread of the full historical ensemble to match the one of the predictions. While 
we find that in this region all the subselection methods reduce the historical ensemble 
spread, bringing them closer to the spread of the decadal predictions and thus 
improving the statistical consistency of the blended product, there are again 
important differences associated with the metric considered. Using the Euclidean 
distance method leads to a slight over reduction of the ensemble spread with respect 
to the decadal prediction ensemble for all start dates. By contrast the centred pattern 
correlation approach tends to overestimate the spread, in particular, for the start 
dates prior to year 2000, which misrepresent the lower bound. For start dates after 2000 
the centred pattern correlation approach works more effectively in constraining the 
historical ensemble. This could be related to the transition from negative to positive 
anomalies in the Subpolar North Atlantic. Again, considering the constraining based 
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on the global ocean or the North Atlantic does not seem to have a clear effect for this 
index.  

 

Figure 11. Subpolar North Atlantic SST (ºC) at the transition between the decadal 
predictions and historical simulations for the full and constrained ensembles using four 
methods. Gray and pink shading are the minimum-maximum range of the decadal 
prediction and the historical constrained ensembles, respectively. Dashed blue lines 
are the minimum-maximum range of the full historical ensemble.  

The next steps will involve testing the centered root mean square difference as an 
alternative to the Euclidean distance. This approach could help address issues 
encountered during member filtering and potentially improve the distribution of the 
constrained members.  We will also test if results improve by expanding the size of the 
historical ensemble by including all available historical simulations. The larger pool 
should help identify better analogs, at the expense of introducing simulations from 
models that are not represented in the decadal prediction ensemble, which could 
potentially degrade the physical consistency of the blended product. While this 
analysis has focused on sea surface temperature (SST), we  will also apply the blending 
methodology to near-surface temperature and sea level pressure over Europe, and 
assess its effectiveness for predicting extreme events for the demonstrator cities that 
are relevant —taking advantage of the ensemble distribution. 

 

3.3 Progress Beyond State of the Art  
This deliverable presented four new innovative blending methods developed in Task 
5.2 to provide relevant time-to-event forecasts (NRC) and seamless and relevant 
climate information over the next decades (DMI, CNRS-Cerfacs, BSC).  
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3.4 Discussion and Next Steps 
Several blending methods for time-to-event forecasts and decadal timescales were 
developed in Task 5.2 and presented in this deliverable:  
 

● Several blending methodologies were explored to perform time-to-event 
forecasts (i.e. forecasts that estimate the timing of a specific event) from 
different numerical weather predictions, using as an example application the 
first hard freeze of the winter season for locations in Norway and Fennoscandia. 
These methods generally improve upon single-source forecasts when the 
sources are balanced in terms of noise-to-signal ratio and there is enough 
hindcast data. These methods can be used to study other time-to-event 
forecasts, such as a sudden stratospheric warming or a drought period. 
 

● A new blending method was developed to provide skillful estimates of winter 
climate over Eurasia for the next ten years, using the observed teleconnection 
between the NAO and surface air temperature to constrain historical 
simulations. The evaluation shows that this method could offer skillful winter 
surface air temperature predictions on multi-annual timescales at minimal cost 
compared to state-of-the-art initialized decadal climate predictions. 
 

● A new blending methodology explored the potential benefits of combining the 
three available sources of information —observations, initialized decadal 
predictions, and non-initialized climate projections— to provide relevant 
information on near-term climate change with reduced uncertainty related to 
internal climate variability. Its assessment for the prediction of winter surface 
temperature over the Mediterranean region as a case study highlights the 
added value of this method in comparison to the historical ensemble or 
hindcast prediction alone. 
 

● A new blending method was developed to combine decadal predictions and 
climate projections to provide seamless climate information for the next 30 
years. This method is based on constraining climate projections based on the 
ensemble of decadal predictions, which allow us to blend predictions and 
projections, maintaining the statistical properties of both ensembles, making it 
suitable for probabilistic predictions, including of climate extremes.  

These blending methods are promising and their assessments highlight the potential 
benefits for improving our information about future weather and climate, on 
timescales that range from a few weeks to several years to decades ahead.  
 
The next step will be to compare these blending methods, in terms of consistency and 
usefulness for several case studies in Task 5.3. 

4 Impact 
We will discuss these new methodologies with other colleagues and collaborators in 
the sister project ASPECT, so we can compare the advantages and disadvantages 
with respect to other methodologies developed within ASPECT, which could lead to 
further improvements.  
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The results from these new methodologies, especially for near-term future prevision, 
can be of particular interest for WP6 of the I4C project. Further discussions are needed 
to ensure a good alignment with WP6 needs. 

In this way the outcomes of this deliverable will contribute to I4C Expected Outcomes 
3 (“Improved assessment of risks for people and systems exposed to extreme weather 
a climate events”) and 4 (“Enhanced scientific collaboration and exploitation of 
synergies across the EU and Associated Countries”). 

5 Links Built 
There is an ongoing discussion with partners of WP6 to select some target variables of 
relevance for the demonstrator cities. This will be then included in the case studies to 
be presented in Deliverable 5.3 assessing the ability of I4C’s blending methodologies. 
 

6 Communication, Dissemination and 
Exploitation 

 

Participation to conferences 
● The new methodology developed by CNRS-Cerfacs has been presented in the 

EGU 2024 (oral presentation), the 15th International Meeting on Statistical 
Climatology at Toulouse (oral presentation) and the EMS 2024 annual meeting 
in Barcelona (oral presentation).  

 

Peer reviewed articles:   
There are articles by all groups in preparation related to the corresponding work 
shown in this deliverable. 

● Cunen, C., Roksvåg, T., Heinrich-Mertsching, C., & Lenkoski, A. (2025). 
Combining predictive distributions for time-to-event outcomes in meteorology. 
In review. arXiv preprint arXiv:2503.19534. 

● Mahmood, R., Yang S., Donat M., (2025), Constraining the NAO-temperature 
teleconnection in CMIP6 simulations enables skillful multi-annual predictions of 
Eurasian winter climate, Environmental Research Letters, in review. 
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