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1 Summary for Publication 
This deliverable documents some of the key inconsistencies that need to be addressed 
by the blending methodologies to be developed in Task 5.2 to produce truly seamless 
predictive information. It describes results from previous literature as well as from new 
analyses performed in Task 5.1, all relevant for the blending of decadal climate 
predictions and multidecadal climate projections.  

2 Contribution to the top-level objectives of 
Impetus4Change  

This deliverable contributes to the following I4C specific objectives: 

SO5: Develop seamless homogeneous predictive information from very short 
(subseasonal) to climate change (several decades) timescales, both at the global 
and regional scale and additionally i) advance novel approaches to blending and 
aligning forecast information across timescales in a way that improves the forecast 
skill and therefore underpins strategic decision-making and ii) provide this information 
to I4C demonstrator projects and stakeholder with clear guidance and best 
practices. 

How: by revealing the main inconsistencies between climate predictions (providing 
our best information from months up to a decade) and climate projections (our main 
source of future information beyond a decade) that need to be addressed by the 
blending methodologies to produce truly seamless predictive information at all 
timescales. 

SO2: Identify factors degrading dynamical predictions and propose solutions to i) 
improve dynamical prediction systems on seasonal-to-decadal timescales using 
novel methods to mitigate deficiencies and close the gap between current skill and 
potential predictability, and thus to ii) enable delivery of predictions of improved 
quality in particular for Europe and for variables of high societal relevance. 

How: by identifying the regions and variables for which dynamical initialised 
predictions and transient climate projects show marked differences, which can help 
to identify the mechanisms and processes that develop initialization shocks or 
adjustments.  
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3 Detailed Report 
3.1 Introduction and literature review 
Before exploring the various methodologies for blending climate information from 
different sources/experiments, such as initialised climate predictions and transient 
historical simulations, it is important to investigate the potential uncertainties and errors 
that can arise when concatenating data that are not fully consistent with each other. 
The rationale for blending information from these sources is related to the fact that the 
initialised climate predictions (which deliver the most trustworthy information about the 
imminent future as they leverage the predictive capacity from both internal variability 
sources and external forcings) only cover the next 10 years after initialization (Boer et 
al., 2016). Beyond 10 years, our best source of information derives from ensembles of 
transient climate simulations (i.e. historical + future projections) that only capture the 
externally forced predictable signals. Both sources can be potentially combined to 
produce seamless predictions at multidecadal timescales to assist in the development 
of successful strategic plans for climate change adaptation. However, some 
necessary adjustments need to be addressed by the blending approaches to deal 
with potential inconsistencies between the datasets.  
 
The concept of blending climate information from initialised predictions and the 
uninitialised projections is fairly new with only one study (Befort et al., 2022) attempting 
to explore potential benefits and challenges that may arise during the blending 
process. Both physical and probabilistic inconsistencies between the decadal 
predictions and the historical+projection experiments can indeed hinder the blending 
process. Befort et al. (2022) suggested tackling some of the probabilistic 
inconsistencies (See Figure 1 for an example based on Northern European surface air 
temperatures) by applying a calibration technique that is based on a well-known 
variance inflation method (Doblas-Reyes et al., 2005). However, variance inflation 
alone cannot resolve issues arising from blending data with non-stationary ensemble 
spreads and/or ensembles and neglects the problem of physical consistency. A 
separate study (Verfaillie et al., 2021), also revealed additional inconsistencies 
between the decadal predictions and historical+projections of regional air surface 
temperatures for different scores that measure the reliability of the datasets, including 
rank histograms and Jolliffe and Primo (2008) test statistics.  
This deliverable investigates other potential inconsistencies between initialised 
predictions and future projections, presenting results from new analyses that have 
been conducted in Task 5.1 of the project, which will be helpful in refining the existing 
blending methods and also developing new approaches following recent 
constraining methods (e.g. Mahmood et al. 2021) in the coming months. These results 
are provided in the following sections, as individual contributions from the different 
institutions involved in WP5. 
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Figure 1. Bottom panels from Figure 2 of Befort et al., (2022). (g) Gausian fit for baseline 
and merged incremental distributions, with dashes lines representing mean and 
dotted lines standard deviations. (h) PDFs (probability distribution functions) of the 
baseline and merged distributions. The grey area indicates overlap between the two 
distributions. (i) Distribution for the time series of baseline and merged increments. (j) 
Cumulative distribution of the merged and baseline increments.  
 

3.2 Data and Methods 
For the sake of homogeneity, all the new analyses presented in this deliverable that 
explore the consistency between retrospective initialised decadal climate predictions 
and historical simulation ensembles are based  on three models, CNRM-ESM2.1, EC-
Earth3 and NorCPM1, which have been performed by I4C partners involved in WP2 
and WP5. Some of the analyses presented in this deliverable also consider the large 
ensembles of historical simulations (LENS) and decadal predictions (DPLE) performed 
with the CESM model (Kay et al., 2015; Yeager et a., 2018), as these provide 40 
members per type of experiment, which is substantially higher than for the rest.  
 
The common analysis period for all the new analyses covers the years 1970 to 2014 
(with some exceptions properly indicated in the relevant sections). Likewise, in the 
decadal predictions we have only considered the last forecast year as (1) this is when 
the model is expected to be closer to the mean state of the historical run which should 
minimise the inconsistencies between the two ensembles and (2) this is the forecast 
year that will be later used by the blending approaches to leverage as much as 
possible the added predictive value of initialization in the final blended products. The 
last forecast year corresponds to year 10 in models EC-Earth3, NorCPM1, CESM and 
year 5 in CNRM-ESM2.1. Some institutions have also analysed forecasts 1 and 5  in 
addition to forecast year 10. 
 
From the three models, both EC-Earth and NorCPM1 have more than one 
retrospective prediction set, which mostly differ in the initialization strategy. We use the 
first and the second initializations of EC-Earth, as they are very different in nature, and 
only the first of NorCPM1 as the second is very similar to the first. From the four decadal 
prediction systems considered, CNRM-ESM2.1 decadal predictions are full-field 
initialised from a reconstruction based on a 3D nudging of the ocean component of 
the model EC-Earth predictions performed at BSC (i1) are full-field initialised, while the 
one with EC-Earth by DMI/SMHI (i2), and the set considered from NorCPM are both 
anomaly initialised (an strategy that could potentially improve the consistency with 
the historical ensemble). The details of these models are summarised in Table 1. 
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Model 
Resolution 

(Atmospher
e/Ocean) 

DCPP-A (s1960-s2014) Historical Simulations 

Initialisation Members Ref. Members Ref. 

CNRM-ESM2-1 T255L91/ 
ORCA1L75 Full-Field 15 

 Séférian 
et al. 

(2019)- 
10 

Séférian 
et al. 

(2019)- 

EC-Earth3-i2 T255L91/ 
ORCA1L75 Anomaly  4 Tian et al. 

(2021) 22 
Döscher 

et al. 
(2020) 

EC-Earth3-i1 T255L91/ 
ORCA1L75 Full-Field 10 Bilbao et 

al. (2021) 22 
Döscher 

et al. 
(2020) 

NorCPM1 1.9ºx2.5ºL26 
/ 1ºL53 

Anomaly 
(EnKF 

assimilation) 
10 Bethke et 

al. (2021) 30 - 

CESM1 1.ºx1º Full-Field 40 
Yeager 
et al. 
(2018) 

40 Kay et al., 
(2015) 

Table 1. Details of the climate models used in this deliverable. Note that both EC-Earth3 
decadal predictions have the same reference historical simulations. 
 
 

3.3 Work Carried Out by the different partners 

 
DMI  
 

1. A literature review on the main inconsistencies between initialised decadal 
predictions (DEC) and historical (HIST) simulations as revealed in previous works, 
with several examples to illustrate them (integrated in the introduction). 

2. A new analysis that focuses on the DEC vs HIST inconsistencies in the 
representation of the North Atlantic atmospheric circulation modes and their 
relationship with the AMV (described in the Results section) . 
 

BSC  
 

1. A new analysis that documents the inconsistencies between the probabilistic 
distributions of the anomaly sea surface temperature (SST) patterns in the DEC 
and HIST ensembles (described in the Results section). 
 

2. A new analysis that documents the inconsistencies between the main global 
modes of SST variability (as described by the first five Empirical Orthogonal 
Functions of the anomaly SST patterns) in the DEC and HIST ensembles 
(described in the Results section). 
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CSIC 
 

1. A new analysis revealing the inconsistencies in the representation of city-
relevant weather types in reanalysis, DEC and HIST ensembles. Weather type 
frequencies from decadal predictions at different lead times were compared 
to historical simulations and reanalysis data, considering the signal-to-noise ratio 
to identify significant predicted anomalies using 10-member ensembles for 
each of the sources (described in the Results section).  

 
CNRS-CERFACS 
 

1. A new analysis that illustrates how (in)consistently DEC and HIST ensembles 
represent surface air temperature trends in the main IPCC European regions 
(described in the Results section). 
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3.5 Main Results Achieved 
 

3.5.1 Inconsistencies in the representation of the main modes of 
variability of the North Atlantic circulation (DMI) 

 
We analysed the historical and prediction runs based on LENS and DPLE ensembles 
from CESM which both include 40 ensemble members. The analyses have been 
repeated with 15-members ensembles from EC-Earth. We use the period 1960-2017. 
 
Christiansen et al. (2023) found that for surface air temperature (TAS) in CESM model 
the increased skill, measured as the correlation between ensemble mean and 
observations, of decadal forecasts compared to the historical ensemble decays fast 
with lead-time. For lead-times larger than 4 years the initialisation adds little skill in most 
geographical areas, which could imply that the predictions have converged towards 
the historical trajectory. 
 
Here we have extended the analysis by looking at the ensemble spreads. Even though 
the skill remains low, the initialised ensemble could potentially provide a more precise 
prediction. Figure 2 shows the geographical distribution of the ensemble spread for 
the historical ensemble and for the initialised ensemble at lead-times 1 and 10 years. 
We find that for small lead-times the initialisation does decrease the spread. For larger 
lead-times, however, the effect is negligible and the spread for lead-time10 appears 
to be consistent with the spread in the historical ensemble. However, some minor 
inconsistencies might be hard to detect in this type of plot. 
 
For the CESM ensembles, the fraction of the globe where initialisation reduces the 
historical spread changes more or less linearly from 1 in the first forecast year to around 
0.4 at forecast year ten (Figure 3), which is still far from zero (the value that would 
indicate that both spreads are fully consistent for all grid points). For the EC-Earth 
ensembles we find a much larger effect of initialization on the spread, as evidenced 
by the fact that the same metric stabilises around 0.8. Interestingly, the spread in the 
initialised EC-Earth ensemble is comparable to the spread in the DPLE ensemble (not 
shown for the sake of conciseness). The main differences between EC-Earth and CESM 
happen for the spread in the historical ensemble, which is comparatively larger in EC-
Earth at high latitudes. 
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Figure 2. Left panels show the geographical distribution of the ensemble spread 
(standard deviation) in surface air temperature for (top) the historical ensemble LENS, 
(middle) the initialised ensemble DPLE at forecast year 1, and (bottom) the initialised 
DPLE ensemble at forecast year 10. Right panels show the differences between 
initialised and historical ensembles. The spread is averaged over all years. 
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Figure 3. The fraction of the globe where the spread is smaller in the initialised ensemble 
than in the historical one. Values are shown as a function of forecast-time (in years). 
 
We now explore whether the connection between the Atlantic Multidecadal 
Variability (AMV) and the North Atlantic Oscillations (NAO) is consistent between the 
decadal predictions and the historical ensembles. To this end we calculate their 
lagged correlations using both unsmoothed and decadally smoothed time series. The 
results are shown in Figure 4.  
 
For the unsmoothed time series, which mostly describes their interannual connection 
(left) the LENS ensemble shows a  negative correlation between both variables at lag 
0. In observations this correlation is weaker and takes maximum values when the NAO 
leads by 2 years. In DPLE, no clear negative correlations are seen for lag 0 in the first 
forecast year, although the negative lag 0 correlation is somewhat recovered at 
forecast year 10, indicating that by the end of the predictions their consistency with 
the historical ensemble has qualitatively improved, even if none of the ensembles is 
consistent with the observations.  
 
For the decadally smoothed time series high positive correlations are found when NAO 
leads the AMV by one decade. This result is not found in the historical ensembles, nor 
in the last year of the predictions which are therefore consistent with each other. By 
contrast, a positive correlation is indeed found when the NAO leads the AMV by 10 
years in the first year of the predictions, which indicates the relationship is partly 
corrected via initialization. 
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Figure 4.  Correlations between NAO and AMV as a function of time lag. NAO leads 
AMV for negative lags. Red curve corresponds to results from observations (20CRv2c). 
The thin grey lines represent individual ensemble members and the thick solid blue line 
the ensemble mean of the correlations. For observations big/small, green filled circles 
indicate that correlations are significant at the 5/10% level (p < 0.05 / p < 0.1). For the 
model ensemble the dashed blue curve gives the fraction of ensemble members that 
are significant to the 5% level (p < 0.05).  Left: annual values. Right: Decadally 
smoothed values (10-years moving average filter).  Top row: LENS historical. Bottom 
rows: DPLE for forecast-time 1 and 10 years. 
 
 

3.5.2 Probabilistic and physical inconsistencies in the representation 
of SST anomaly fields (BSC) 

To inform the blending methodologies for the decadal predictions and climate 
projections, which will be implemented later in this WP, we compare the sea surface 
temperature (SST) anomaly field in decadal predictions and historical simulations for 
the four prediction systems described in the methods section. All anomalies 
correspond to the period 1970-2014, except for CNRM-ESM2-1 for which the period is 
1965-2014 (since the hindcasts are 5 years long instead of 10), and in the case of the 
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prediction systems are computed for the selected forecast time. For this analysis we 
have used the updated i4 initialisation version of the EC-Earth3 full-field initialised 
system, instead of i1. 
 
We start by comparing the temporal mean of the intra-ensemble spread (as 
characterised by the standard deviation across members) of the SST anomaly fields 
both in the decadal predictions and the historical simulations. Figure 5 shows that the 
main features of the resulting patterns are very similar across all the experiments and 
models. The tropical and North Pacific Ocean and the North Atlantic Ocean standout 
as the regions with the largest intra-ensemble spread. There are differences however 
in the magnitude of the standard deviation in these regions, in particular, in the North 
Atlantic. In the CNRM-ESM2-1 and EC-Earth3 models, the intra-ensemble variability is 
greater in the historical simulations with respect to the decadal predictions, while for 
NorCPM, the differences are much smaller and probably not statistically significant.  
 

 
Figure 5. Temporal mean of the intra-ensemble standard deviation for the SST anomaly 
fields (ºC) in (a-d) the decadal prediction systems at forecast year 10 (except for 
CNRM-ESM2-1, for which forecast year 5 is shown) and (e-h) for their corresponding 
historical simulations. The reference period used for the computation of the anomalies, 
and the period covered by the experiments are both 1970-2014. Note that panels f 
and g are the same since there is only one set of historical simulations. 
 
Next we compare the SST probability distributions in a different way. For each 
prediction system and model we generate an ensemble that combines the SST 
anomaly fields for all ensemble members and start years. The analogous ensemble for 
the historical simulations is in turn composed by all the ensemble members and 
simulated years. For the resulting distributions of SST anomaly fields, we computed the 
5th, 20th, 50th, 80th and 95th percentile to make a comprehensive comparison of the 
most extreme anomaly values in the historical and decadal prediction ensembles, as 
well as their medians. Figure 6 shows the results for the full-field initialised predictions 
and the historical ensemble of EC-Earth (i4). In most regions of the world, the different 
percentiles show similar values in both ensembles of simulations. However, the North 
Atlantic stands out as a region with important differences, which become larger for 
the most extreme percentiles, a result that was also found for different variables and 
metrics in Befort et al. (2022). Similar results are also found for the CNRM-ESM2-1 and 
the anomaly initialised predictions of EC-Earth3 (not shown). In contrast, the 
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differences in the percentile patterns for NorCPM1 are considerably smaller, and 
probably, as shown in Figure 6, statistically not significant (Figure 7). 
 

 
Figure 6. Selected percentiles in the distributions of SST anomaly fields (°C) in the full-
field initialised predictions (a-e) and historical simulations (f-j) of EC-Earth3 for the 
period 1970-2014. 
 

 
Figure 7. As Figure 6, but for NorCPM1. 
 
The large differences found in the North Atlantic for CNRM-ESM2-1 and EC-Earth3, 
which use NEMO3.6 as their ocean component, could be related to the overly large 
multi-decadal variability in the North Atlantic that their piControl and historical 
simulations exhibit, a feature variability  that is somewhat damped by the initialization 
process (Bilbao et al 2021). The strong agreement between the historical and climate 
predictions for the NorCPM1 model could be partly related to the initialization 
technique used in the decadal predictions, as with anomaly initialisation the model is 
constrained by observed anomalies deviating from the historical simulations 
climatology. The anomaly-initialised predictions of EC-Earth3 (i2) also use anomaly 
initialisation, and while differences with the historical ensemble are still evident in the 
North Atlantic, it is also true that these are smaller with respect to the full-field initialised 
version (i4). This suggests that anomaly-initialised decadal predictions systems could 
enhance the consistency and thus be more suitable for the blending decadal 
predictions and climate projections. 
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Figure 8. Area weighted spatial correlation between the first five EOFs of the SST 
anomaly fields in the decadal predictions and the historical simulations for the four 
systems considered.  
 
While, so far, all blending methodologies targeting the decadal predictions and 
climate projections have addressed their statistical consistency (e.g. Befort et al., 
2022), their physical consistency has been neglected, and is indeed not guaranteed. 
To illustrate to what extent physical consistency can be a problem, we compare the 
dominant modes of variability for the previous SST anomaly fields variability as derived 
from Empirical Orthogonal Function (EOF) analysis. Figure 8 shows the area-weighted 
spatial correlations between the EOFs of the decadal predictions and the historical 
simulations in the four selected prediction systems. Interestingly, the spatial correlations 
across EOFs for the EC-Earth3 and the CNRM-ESM2-1 models show important 
differences between the two ensembles, as the historical EOFs are not always in good 
correspondence with their analogous ones in the predictions. More importantly, 
NorCPM1 stands out again as a model of high consistency between the historical and 
the predictions, as all the EOFs with the same number are very strongly correlated with 
each other. For NorCPM1, the first three EOFS explain most of the variance, while for 
the other models it is mostly the first two. 
 
For the first EOF, which explains most of the variance, the systems that are full-field 
initialised (CNRM-ESM2-1 and EC-Earth3 i4) show lower correlation values with respect 
to the historical counterpart than the two other decadal prediction systems that are 
anomaly initialised (EC-Earth3 i2 and NorCPM1). This suggests a strong impact on the 
physical consistency of the initialisation method used. To further explore this, figures 9 
and 10 show the first five EOFs for the EC-Earth3 and NorCPM decadal predictions 
systems and the historical simulations. For both EC-Earth3 prediction systems (Figure 9a, 
g, l), the first EOF resembles the global warming pattern associated with increasing 
greenhouse gas (GHG) emissions, however there are strong differences in the North 
Atlantic Ocean which are likely associated with the presence of strong centennial 
variability in this region in the historical simulations. Similar patterns and differences are 
found for CNRM-ESM2-1. In contrast, NorCPM1 predictions and historical simulations 
show very strong agreement and a pattern that is highly dominated by El Niño 
Southern Oscillation variability (Figure 10a, g). 
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Figure 9. EOFs of the SST anomaly fields for (a-f) EC-Earth3 anomaly initialised (i2) 
decadal predictions, (g-k) EC-Earth3 full field initialised (i4) decadal predictions and (l-
p) EC-Earth3 historical simulations. 
 
In contrast with the first EOF, the second EOF is very consistently simulated between 
the historical simulations and the predictions in the four models (Figure 8). In EC-Earth3 
and CNRM-ESM2-1 this is the EOF that is dominated by El Niño Southern Oscillation 
variability (Figure 9b, h, m), while in NorCPM1 the second EOF captures most of the 
global warming signal.  
 

 
Figure 10. EOFs of the SST anomaly fields for NorCPM1 (a-f) decadal predictions and 
(g-k) historical simulations. 
 

3.5.3 Inconsistencies in the representation of city-relevant weather 
types (CSIC) 

The Jenkinson-Collision (JC) approach is a well-known weather type (WT) classification 
method used in synoptic climatology that assigns an SLP field centred on a given 
location at a given time-step to one out of 27 possible discrete classes, which can be 
physically interpreted and have a discernible impact on the local weather conditions 
(Brands 2022, Brands et al. 2023, Fernández-Granja et al. 2023).  There are 8 pure 
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directional types characterised by a pronounced pressure gradient over the region of 
interest which, in combination with the relative positions of the low and high pressure 
systems, determine the direction of atmospheric flow (NE, E, SE, S, SW, W, NW and N) 
and, indirectly, the properties of the advected air masses reaching the target location. 
Furthermore, there is a pure cyclonic and a pure anticyclonic class and 8 hybrid 
classes for each of them which combine (anti)cyclonic conditions with a predominant 
atmospheric flow that, however, is weaker than during pure directional situations. 
Finally, the Unclassified type refers to synoptic conditions that do not meet any of the 
aforementioned conditions, characterised by a weak pressure gradient and 
negligible vorticity over the target location. As an example for the impact of the JC 
classes on local weather, Figure 11 shows the signature of cold events over Prague on 
the weather types centred on that location as reproduced in our observation-based 
reference (ERA5). In general, the pure anticyclonic (25%), westerly (9%) and cyclonic 
(9%) types are the most common in Prague. Cold events are largely associated with 
high anticyclonic type frequencies (52%), while, e.g., westerlies occur rarely (2%) 
during these events. This link has a physical background through atmospheric blocking 
situations and decreased mild air advection. Therefore, the JC types encompass 
spatial scales which are resolved by GCMs (they are computed on a 30º x 20º lon-lat 
domain) and have a direct, local-scale impact, as shown here for an I4C demonstrator 
city. 
 

 
Figure 11: (a) Marginal frequency of the 27 JC weather types centered over Prague, 
according to the ERA5 reanalysis for the period 1979-2005. (b) Conditional frequency 
of the corresponding types during cold events with (c) standardised deseasonalized 
temperature anomalies below 2 units. (d) Conditional minus marginal weather type 
frequency. 
 
The computation of the JC WTs requires 6-hourly instantaneous mean sea-level 
pressure data. These sub-daily data are not commonly saved in decadal forecasts,  so 
we focused on the full-field initialised version of Ec-Earth3, the only one of the 
preselected prediction systems  providing this data.  
 
These datasets were used to classify the circulation, at each time step, into JC WTs 
centred over each of the I4C demonstrator cities. For the dcppA experiment, forecast 
years 1, 5 and 10 were considered, covering the periods 1961-2019, 1965-2023 and 
1970-2028, respectively. The historical simulations were extended with their respective 
SSP245 runs to cover the period 1961-2028. In order to have a comparable ensemble 
size, we selected also 10 members from the historical simulation: r1i1p1f1, and the 
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corresponding r4, r10, r12, r14, r16, r17, r18, r21 and r24. All model data were retrieved 
from the ESGF data portals. JC types were also calculated upon 6-hourly 
instantaneous SLP data from the 10 members of the CERA-20C reanalysis dataset 
(Laloyaux et al. 2018) and from ERA5 (Hersbach et al. 2020), covering the period 1961-
2010 and 1961-2022, respectively. Both reanalysis datasets were retrieved from the 
Copernicus Climate Data Store. They serve as observational references and also 
permit estimating observational uncertainties along the indicated time period. City-
scale 6-hourly JC type time series were aggregated into annual relative frequencies 
for each type. Individual forecast years of consecutive decadal hindcast initializations 
were assembled to obtain quasi-continuous time series for forecast years 1, 5 and 10, 
covering the aforementioned periods so that they can be directly compared with the 
respective time series of historical simulations and reanalyses. No a-posteriori model 
correction was applied. To leverage the anticipated large effects of internal variability 
on the results (Deser et al. 2012, Maher et al. 2019), the annual JC type frequency time 
series were further averaged using a 10-year running window. 
 
To evaluate to which degree a forced signal arises from internal variability (or climate 
noise) on decadal time-scales, signal-to-noise ratios were computed as follows: Firstly, 
the yearly JC type relative frequencies were transformed into anomalies by removing 
the 1970-2019 mean value from each yearly value. Then, 10-year running mean values 
were calculated on the resulting yearly anomalies. This was done separately for each 
historical experiment member and for the EC-Earth3 DCPP hindcasts (i1) re-formatted 
to form a quasi-continuous time series with fixed forecast year 1, 5 and 10, respectively. 
The signal-to-noise ratio (SNR) for an individual 10-year period of any of these series is 
then defined as: 
 

SNR = 𝜇𝜇 / σ, 
 
with 𝜇𝜇 being the mean-value and σ the standard deviation of the 10 individual 
anomalies for the decade and experiment in question. The significance of SNR, i.e. 
emergence of a forced signal on the background of climate noise for this decade, is 
then given by Deser et al. (2012): 
 

SNR ≥ ± 2 / √(n-1) , 
 

depending on the sample size (n), which in this case is the number of ensemble 
members (n = 10). In practice, this means that SNR values exceeding ⅔ are significant, 
i.e. the weather type frequency anomaly is forced either by external agents or by 
internal agents from climate system components outside the atmosphere (e.g. SSTs, 
sea-ice extent, snow cover or soil moisture). 
 
Figure 12 shows 10-yr running mean frequencies of the pure anticyclonic type centred 
over Barcelona. Thick solid lines show ensemble means for the dcppA experiment at 
forecast years 1, 5 and 10, as well as for the historical experiment. For DCPP-A forecast 
year 10 and the historical experiments, the running decadal-mean values of the 
individual members are also depicted as dashed lines. The observation-based 
reference and their respective uncertainty, as provided by CERA-20C, are shown in 
black. Decadal forecasts show very limited skill for weather types. However, individual 
EC-Earth3 simulations show very low biases and comparable variability to the 
observations (see e.g. the thicker dashed lines highlighting a single member from 
DCPP-A FY10 and from the historical experiment). 



Impetus4Change / Deliverable 5.1 / Guidelines for the blending methods 18 
 

 
 

 
Figure 12: Running decadal mean frequencies of the Pure Anticylonic type in 
Barcelona according to 10-members ensembles from the CERA-20C reanalysis, 
historical EC-Earth3 simulations and DCPP hindcast (dcppA) simulations for forecast 
years 1, 5 and 10. Dashed and dotted lines show individual members and solid lines 
represent their ensemble mean. ERA5 is also shown as reference. 
 

 
Figure 13: Running signal-to-noise ratios (SNRs) for the decadal-mean relative 
frequencies of the Pure Anticyclonic type in Barcelona for the dccpA experiment and 
forecast years 1, 5 and 10, as well as for the historical experiment (y-axis) along the 
period 1961-2028 (x-axis). Significant SNRs (𝛼𝛼 = 0.05) are indicated by red dots. 
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Regarding the signal in decadal predictions, as expected from previous studies 
assessing SLP variability on multi-annual to decadal time-scale (Deser et al. 2012, 
Maher et al. 2019), the noise component dominates the predictable signal even for 
10-year mean anomalies and, consequently, SNR is rarely significant (Figure 13). The 
running predicted response of DCPP-A, as represented by the ensemble-mean in 
Figure 12, differs from that of the historical experiment for short lead-times (forecast 
year 1 in this case), indicating that initialization has an impact on the local-scale 
atmospheric circulation even if the background noise is substantial. As expected, 
these differences are much reduced for forecast years 5 and 10, where the running 
predicted response moves towards the corresponding values of the non-initialised 
historical simulations. For the case of Barcelona, the most notable indication of a 
forced response in the dccpA ensemble is found for the decades centred around 
1985-90 and forecast years 5 and 10, as revealed by significant signal-to-noise ratios 
with a confidence interval of 68 and 95% (Figure 13), respectively. If such relatively 
weak confidence intervals are considered, significant signal-to-noise ratios appear 
consistently in all considered forecast years and demonstrator cities during a number 
of heterogeneous time periods. Across these cities, the clearest surplus of significant 
responses along the study period derived from the dccpA ensemble, if compared with 
the historical ensemble, is obtained in Barcelona. This indicates an influence of the 
observationally constrained internal climate system components in the dcppA 
ensemble on top of the external forcing agents’ influence, prescribed in both the 
dcppA and historical ensemble which, however, are generally not consistently present 
in all forecast years. In this context, Mediterranean SSTs in the initialised ensemble might 
be colder or warmer than in the historical ensemble, leading to suppressed or 
enhanced land-sea temperature contrasts that favour or disfavour the build-up of 
thermal pressure cells and associated cold high-pressure and warm low-pressure 
systems. 
 
As a final summary, Figure 14 compares the spread of the 10 temporal-mean relative 
LWT frequencies from the historical experiment with the respective ensemble-mean 
values for the initialised forecast years 1, 5 and 10, and the mean value of ERA5 is 
included as observational reference. This is shown for  all I4C demonstrator cities and 
for the two dominant JC WTs (PA and PDW). For comparison with the other sections, 
the 1970-2014 period is considered here. For the Pure Anticyclonic weather type, the 
ensemble-mean of the initialised predictions tend to thrive away from the observed 
values as the forecast year (or lead-time) increases, being generally shortest for FY1. 
For the Pure Directional Westerly type, however, this is not the case. The reasons for 
such a distinct behaviour of the weather types are unclear at this point and should be 
further explored in the future. The FY10 climatology tends to be consistent with the 
historical non-initialized simulations, falling within the range of the historical ensemble 
members for all I4C demonstrator cities and both dominant weather types. Figure 14 
also shows that the spread of the Pure Anticyclonic type climatologies in Barcelona 
and Bergen is considerably smaller for FY1 than the spread of the historical 
climatologies, pointing to a possible constraint to observations in the initialised model 
runs. The existence of such a constraint is further strengthened by an exact match 
between the dcppA mean climatology at FY1 and the respective value taken from 
ERA5, found for Barcelona. 
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Figure 14: Climatological-mean relative frequency of the Pure Anticyclonic (left) and 
Pure Directional West (right) weather types for the four I4C demonstrator cities during 
the common period 1970-2014. For each city and weather type, the ensemble-mean 
(dark green dot) and ensemble-spread (dark green line) of the 10 historical EC-Earth3 
experiments are compared with the respective values of the dcppA experiment run 
with the same model at forecast years 1, 5, and 10 (see legend). For reference, the 
climatological-mean frequency from ERA5 is also shown. 
 
 

3.5.4 Inconsistencies in the representation of European surface air 
temperature trends (CNRS-CERFACS) 

 
To assess the capacity of decadal predictions and climate projections to be used for 
the blending methodologies implemented later in this WP, we compare their 
performance in simulating  the observed trends in surface temperature over Europe 
over 1970-2014 (Figure 15). Blending methods often consist of finding the uninitialised 
members among the available pool of projections that are the closest to the decadal 
predictions (e.g. Mahmood et al. 2021), which requires the trends of the two data sets 
to be compatible (i.e. the hindcasts to be within the spread of the uninitialised 
simulations). We consider three prediction systems: CNRM-ESM2-1, NorCPM1 and the 
full-field initialised predictions from EC-Earth3 (see Data and Methods section). We find 
that for each region and each forecast year, the hindcast ensemble mean trend is 
within the spread of the historical simulations for each model.  
 
A strong influence of the internal climate variability is visible at decadal timescales, 
with a large spread of surface temperature trends over the three regions, especially in 
winter. At forecast year 5, regardless of the season, the surface temperature trends for 
the hindcast simulations are generally close to the observed ones over the West 
Central Europe (WCE) and Northern Europe (NEU) region for the three models used, 
with slight improvement in comparison to the historical ensemble mean (Figure 15a, 
b). This highlights the added-value of initialization in constraining modelled climate 
trends either by accounting for the phases of internal variability and/or correcting 
errors in model climate sensitivity. Results are more contrasted over the Mediterranean 
(MED) region, with some hindcasts  having larger differences in the surface 
temperature trend than the historical ensemble mean in comparison to the 
observations, for example in summer for the CNRM-ESM2-1 model (Figure 15c).  
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A deterioration in the representation of surface temperature trends in decadal 
predictions is visible at forecast year 10 (Figure 15d, e, f). For example, the winter 
surface temperature trend over the NEU region in the historical ensemble mean of EC-
Earth3 is closer to the observed one than for the one predicted at year 10, which has 
a larger trend. Such a difference was not observed at forecast year 5, which might 
indicate that any added value of the initialization of internal variability is lost by the 
end of the forecast. This can also be the fingerprint of interaction between forecasted 
signal and drifts as hindcast simulations are not at equilibrium state. More importantly, 
that difference in surface temperature trends between the historical simulations and 
the forecasts highlights a potential inconsistency that would need to be addressed by 
the blending methods. Interestingly, other regions and seasons (e.g. the yearly trends 
in the MED area) appear to have more consistent values between the mean of the 
historical and prediction ensembles.  
 
Beyond the blending, we also see that the added value of decadal predictions in the 
representation of surface temperature trend in comparison to the historical simulations 
is however sometimes limited, in particular at the longest forecast times. This should be 
taken into account when implementing a blending method, for example by 
implementing the blending at shorter forecast times, to thus leverage as much as 
possible the predictability that arises from initialization.  
 

 
Figure 15: Winter, summer and annual surface temperature trends calculated over the 
1970-2014 period for the (blue) CNRM-ESM2-1, (beige) NorCPM1 and (green) EC-
Earth3 models. The dot shows the historical ensemble mean and the line shows the 
minimum and maximum among the ensemble members. The diamond shows the 
hindcast ensemble mean for a leadtime (i.e. forecast year) of (a,b,c) 5 years and 
(d,e,f) 10 years.  Trends in the ERA5 and JRA55 reanalyses are shown with red up 
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triangle and red down triangle, respectively. The trends are calculated over three 
European IPCC regions (a, d) WCE, (b, e) NEU and (c, f) MED.  
 
 
 

3.6 Progress Beyond State of the Art  
This deliverable has presented novel work that has revealed new important 
inconsistencies that could prevent an effective implementation of seamless 
predictions that blend information from  initialised decadal predictions and multi-
decadal climate projections, which have been so far neglected. These inconsistencies 
will be tackled in the blending methodologies to be developed in Task 5.2 to underpin 
the reliability and applicability of the final blended products. 

3.7 Discussion and Next Steps 
The inconsistencies revealed in this deliverable cover a broad range of variables and 
metrics, which reflect the scientific interests and backgrounds of the different partners 
involved. The analyses have also been tailored to assess the consistency for variables 
that describe processes that are relevant for the different blending approaches that 
will be developed by each group, from the dominant modes of atmospheric and 
oceanic variability that drive the regional climate responses (e.g. over Europe), to the 
regional local trends and the main weather-types affecting the demonstrator cities. 
 
The main lessons derived from the different analyses performed are now summarised: 
 

● Important inconsistencies between decadal predictions and multi-decadal 
projections have been identified both for their statistical properties (e.g. 
ensemble spread, extreme and median percentiles of their probabilistic 
distribution, trends) and physical processes (e.g. weather types frequencies, 
NAO-AMV interactions, global modes of SST variability). 

● By the end of the predictions (typically finishing on forecast year 10) their 
inconsistencies with the historical ensemble tend to be smaller, as the model 
has had a longer time to move from an initial state constrained by observations 
to its own equilibrium. Implementing the blending for the last forecast year 
could be therefore an optimal strategy to improve the seamlessness of the final 
blended product.  

● The North Atlantic has emerged as a region that is more prone to develop 
strong inconsistencies between the two datasets of interest. This is probably 
explained by the fact that it is a key source region of decadal variability, where 
the predictive value of initialization is expected to last longer.  

● Anomaly initialised prediction seems to reduce the inconsistencies between the 
decadal predictions and the multi-decadal projections, and could be 
prioritised in the production of the blended products. This result, however, still 
needs to be confirmed with a larger ensemble of models, as current analyses 
have only considered two anomaly initialised and two full-field initialised 
prediction systems.  
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4 Impact 
We will share these main lessons with other colleagues and collaborators in the sister 
project ASPECT, so they can leverage them to develop more effective blending and 
constraining methodologies. Some of the lessons are also relevant for decadal 
prediction centres, and will therefore be shared with the I4C partners involved in WP2.  

In this way the outcomes of this deliverable will contribute to I4C Expected Outcomes  
3 (“Improved assessment of risks for people and systems exposed to extreme weather 
a climate events”) and 4 (“Enhanced scientific collaboration and exploitation of 
synergies across the EU and Associated Countries”). 

 
 

5 Links Built 
Lessons learned in this deliverable will inform the blending methodologies that will be 
developed in Task 5.2, fully assessed in Task 5.3, and reported in Deliverables 5.2 and 
5.3. It will also inform WP3 regarding large scale predictors for use in statistical 
downscaling of decadal and historical/scenario simulations that will be developed in 
T3.1. 

6 Communication, Dissemination and 
Exploitation 

 

6.1.1.1 Participation to conferences 
● The work by CSIC on Weather types will be presented in the next EGU General 

Assembly 2024 in Vienna, Austria. 
● The contributions from DMI will also be presented in the EGU General Assembly 

2024 in Vienna, Austria. 

 

6.1.1.2 Participation to dissemination project activities:   
● Results from this deliverable will be included in a general presentation to the 

rest of the project partners on the blending of predictions (date and final format 
still to be confirmed). 

6.2 Peer Reviewed Articles 

There are articles by all groups in preparation related to the corresponding work shown 
in this deliverable. 

1. Christiansen, B., Yang, S., & Drew, A. (2024), The Atlantic Multi-decadal Variability 
in observations and in a large historical multi-model ensemble: Forced and internal 
variability, J. Clim., in review. Submitted version available at: 
www.researchgate.net/publication/374632170 
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